Asymptotic growth of the cohomology of Bianchi groups

Yongquan HU

Morningside Center of Mathematics, AMSS

HongKong, October 15, 2018

→ 同 → → 目 → → 目 →

Main result Proofs

Contents

- Background
- Statements

2 Proofs

- Iwasawa algebras
- Completed cohomology
- Proofs

A ■

< ∃⇒

Main result Proofs Statements

Let $k \geq 2$, $\Gamma \subset SL_2(\mathbb{Z})$ congruence, $\mathcal{M}_k(\Gamma)$ (resp. $\mathcal{S}_k(\Gamma)$) space of (cusp) modular forms of weight k and level Γ . We can compute dimensions of $\mathcal{M}_k(\Gamma)$ and $\mathcal{S}_k(\Gamma)$ using Riemann-Roch theorem.

Example.

$$\dim_{\mathbb{C}} \mathcal{M}_k(\mathrm{SL}_2(\mathbb{Z})) = \begin{cases} \lfloor \frac{k}{12} \rfloor & k \equiv 2 \mod 12 \\ \lfloor \frac{k}{12} \rfloor + 1 & \text{else.} \end{cases}$$

イロン イヨン イヨン イヨン

Let $k \geq 2$, $\Gamma \subset SL_2(\mathbb{Z})$ congruence, $\mathcal{M}_k(\Gamma)$ (resp. $\mathcal{S}_k(\Gamma)$) space of (cusp) modular forms of weight k and level Γ . We can compute dimensions of $\mathcal{M}_k(\Gamma)$ and $\mathcal{S}_k(\Gamma)$ using Riemann-Roch theorem.

Example.

$$\dim_{\mathbb{C}} \mathcal{M}_k(\mathrm{SL}_2(\mathbb{Z})) = \begin{cases} \lfloor \frac{k}{12} \rfloor & k \equiv 2 \mod 12 \\ \lfloor \frac{k}{12} \rfloor + 1 & \text{else.} \end{cases}$$

In particular, when k tends to ∞ ,

$$\dim_{\mathbb{C}} \mathcal{M}_k(\mathrm{SL}_2(\mathbb{Z})) \sim c \cdot k.$$

True for general Γ , i.e. as $k \to \infty$, dim_C $\mathcal{M}_k(\Gamma) \sim k$ (meaning: $c_1 k \leq f(k) \leq c_2 k$).

イロト イポト イヨト イヨト

Let $k \geq 2$, $\Gamma \subset SL_2(\mathbb{Z})$ congruence, $\mathcal{M}_k(\Gamma)$ (resp. $\mathcal{S}_k(\Gamma)$) space of (cusp) modular forms of weight k and level Γ . We can compute dimensions of $\mathcal{M}_k(\Gamma)$ and $\mathcal{S}_k(\Gamma)$ using Riemann-Roch theorem.

Example.

$$\dim_{\mathbb{C}} \mathcal{M}_k(\mathrm{SL}_2(\mathbb{Z})) = \begin{cases} \lfloor \frac{k}{12} \rfloor & k \equiv 2 \mod 12 \\ \lfloor \frac{k}{12} \rfloor + 1 & \text{else.} \end{cases}$$

In particular, when k tends to ∞ ,

$$\dim_{\mathbb{C}}\mathcal{M}_k(\mathrm{SL}_2(\mathbb{Z}))\sim c\cdot k.$$

True for general Γ , i.e. as $k \to \infty$, dim_C $\mathcal{M}_k(\Gamma) \sim k$ (meaning: $c_1 k \leq f(k) \leq c_2 k$).

Similar for Hilbert modular forms (with growth $\sim k^d$, where d is the degree of the totally real field).

・ロン ・回 と ・ 回 と ・ 回 と

However, for modular forms over ${\rm SL}_2$ of an imaginary quadratic fields, no dimension formula is known.

イロン イボン イヨン イヨン 三日

Main result Background Proofs

Statements

However, for modular forms over SL_2 of an imaginary quadratic fields, no dimension formula is known.

Notation:

- $F = \mathbb{Q}(\sqrt{-d}), d > 0$ square-free, $\mathcal{O}_F = \text{ring of integers},$
- $SL_2(\mathcal{O}_F)$ acts on the hyperbolic 3-space $\mathbb{H}^3 := \mathbb{C} \times \mathbb{R}^+$:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot (z, r) := \frac{((az+b)\overline{(cz+d)} + a\overline{c}r^2, r)}{|cz+d|^2 + |c|^2r^2}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

However, for modular forms over ${\rm SL}_2$ of an imaginary quadratic fields, no dimension formula is known.

Notation:

- $F = \mathbb{Q}(\sqrt{-d}), d > 0$ square-free, $\mathcal{O}_F = \text{ring of integers},$
- $SL_2(\mathcal{O}_F)$ acts on the hyperbolic 3-space $\mathbb{H}^3 := \mathbb{C} \times \mathbb{R}^+$:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot (z, r) := \frac{((az+b)\overline{(cz+d)} + a\overline{c}r^2, r)}{|cz+d|^2 + |c|^2r^2}.$$

Definition

A Bianchi group Γ is a congruence subgroup of $SL_2(\mathcal{O}_F)$.

• e.g. $\mathfrak{p}|p$ prime ideal,

$$\begin{split} & \mathsf{\Gamma}(\mathfrak{p}^n) := \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) | a - 1, d - 1, b, c \equiv 0 \mod \mathfrak{p}^n \right\} \\ & \mathsf{\Gamma}_1(\mathfrak{p}^n) := \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) | c \equiv 0 \mod \mathfrak{p}^n \right\}. \end{split}$$

(日) (四) (王) (王) (王)

Can define (cuspidal) modular forms (only real analytic functions) over a Bianchi group Γ of level (k, k); called Bianchi modular forms and denoted by $\mathcal{M}_k(\Gamma)$, resp. $\mathcal{S}_k(\Gamma)$.

・ロト ・回ト ・ヨト ・ヨト

Can define (cuspidal) modular forms (only real analytic functions) over a Bianchi group Γ of level (k, k); called Bianchi modular forms and denoted by $\mathcal{M}_k(\Gamma)$, resp. $\mathcal{S}_k(\Gamma)$.

Theorem (Harder)

$$\mathcal{S}_{k+2}(\Gamma) \cong H^1_{cusp}(\Gamma, V_k(\mathbb{C}))$$

where

-
$$V_k(\mathbb{C}) = \operatorname{Sym}^k \mathbb{C}^2 \otimes \overline{\operatorname{Sym}^k \mathbb{C}^2}$$
, where

-
$$\operatorname{Sym}^k \mathbb{C}^2 = \operatorname{standard}$$
 representation of SL_2

- $H^1(\Gamma, V_k)$: group cohomology; if X_{Γ} = compatification of $\Gamma \setminus \mathbb{H}^3$,

$$H^1_{cusp} := \operatorname{Ker}[H^1(\Gamma, V_k) \cong H^1(X_{\Gamma}, \tilde{V}_k) \to H^1(\partial X_{\Gamma}, \tilde{V}_k)]$$

(ロ) (同) (E) (E) (E)

Can define (cuspidal) modular forms (only real analytic functions) over a Bianchi group Γ of level (k, k); called Bianchi modular forms and denoted by $\mathcal{M}_k(\Gamma)$, resp. $\mathcal{S}_k(\Gamma)$.

Theorem (Harder)

$$\mathcal{S}_{k+2}(\Gamma) \cong H^1_{cusp}(\Gamma, V_k(\mathbb{C}))$$

where

-
$$V_k(\mathbb{C}) = \operatorname{Sym}^k \mathbb{C}^2 \otimes \overline{\operatorname{Sym}^k \mathbb{C}^2}$$
, where

-
$$\operatorname{Sym}^k \mathbb{C}^2 = \operatorname{standard}$$
 representation of SL_2

- $H^1(\Gamma, V_k)$: group cohomology; if X_{Γ} = compatification of $\Gamma \setminus \mathbb{H}^3$,

$$H^1_{cusp} := \operatorname{Ker}[H^1(\Gamma, V_k) \cong H^1(X_{\Gamma}, \tilde{V}_k) \to H^1(\partial X_{\Gamma}, \tilde{V}_k)]$$

Remark: (Borel-Wallach) $H^1_{cusp}(\Gamma, \operatorname{Sym}^k \otimes \operatorname{Sym}^l) = 0$, if $k \neq l$.

Question: dimensions of $\mathcal{M}_k(\Gamma)$, $\mathcal{S}_k(\Gamma)$?

Unknown: no precise formula is known so far. $\Gamma \setminus \mathbb{H}^3$ has no complex structure (3-dim over \mathbb{R}).

Rohlfs (1984): dim_C $S_2(SL_2(\mathcal{O}_F)) \geq \frac{1}{24}\varphi(d) - \frac{1}{4} - \frac{h(d)}{2}$, h(d) =class number.

Question: dimensions of $\mathcal{M}_k(\Gamma)$, $\mathcal{S}_k(\Gamma)$?

Unknown: no precise formula is known so far. $\Gamma \setminus \mathbb{H}^3$ has no complex structure (3-dim over \mathbb{R}). Rohlfs (1984): dim_C $S_2(SL_2(\mathcal{O}_F)) \geq \frac{1}{24}\varphi(d) - \frac{1}{4} - \frac{h(d)}{2}$, h(d) =class number.

Goal: study the asymptotic behavior of the dimension of $H^1(\Gamma, V_k)$.

- **1** k fixed, $\Gamma = \Gamma(\mathfrak{p}^n)$ with $n \to \infty$;
- **2** Γ fixed, $k \to \infty$.

Question: dimensions of $\mathcal{M}_k(\Gamma)$, $\mathcal{S}_k(\Gamma)$?

Unknown: no precise formula is known so far. $\Gamma \setminus \mathbb{H}^3$ has no complex structure (3-dim over \mathbb{R}).

Rohlfs (1984): dim_C $S_2(SL_2(\mathcal{O}_F)) \geq \frac{1}{24}\varphi(d) - \frac{1}{4} - \frac{h(d)}{2}$, h(d) =class number.

Goal: study the asymptotic behavior of the dimension of $H^1(\Gamma, V_k)$.

1 *k* fixed, $\Gamma = \Gamma(\mathfrak{p}^n)$ with $n \to \infty$;

2
$$\Gamma$$
 fixed, $k \to \infty$.

Trivial bound:

(

 k fixed ⇒ dim_C H¹ ≪ [SL₂(O_F) : Γ(pⁿ)]; (use Shapiro's lemma to reduce to the case Γ₁ = 1 is trivial)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Theorem (Calegari-Emerton, 2009)

If k is fixed and $\mathfrak{p}|p$, then

$$\dim_{\mathbb{C}} H^{1}(\Gamma(\mathfrak{p}^{n}), V_{k}) \ll_{k} \begin{cases} \rho^{2n} & \text{if } f(\mathfrak{p}|p) = 1\\ \rho^{5n} & \text{if } f(\mathfrak{p}|p) = 2. \end{cases}$$

Remark:

- Trivial bound: $|SL_2(\mathcal{O}_F/\mathfrak{p})| \sim p^{3n}$, p^{6n} (resp.)
- The bound is *sharp* if f(p|p) = 1 (Kionke-Schwermer, 2015)!
- Proof: Emerton's completed cohomology + (non-comm.) Iwasawa algebra.
- Can't replace $\Gamma(\mathfrak{p}^n)$ by $\Gamma_0(\mathfrak{p}^n)$ or $\Gamma_1(\mathfrak{p}^n)$, since need $\bigcap_{n>1}\Gamma(\mathfrak{p}^n) = \{1\}$.

<u>If Γ is fixed</u>:

Theorem (Finis-Grunewald-Tirao, 2010)

$$k \ll_{\Gamma} \dim_{\mathbb{C}} H^1(\Gamma, V_k) \ll_{\Gamma} \frac{k^2}{\ln k}.$$

(Use: trace formula for \ll and base change for \gg .)

・ロン ・回 と ・ 回 と ・ 回 と

If Γ is fixed:

Theorem (Finis-Grunewald-Tirao, 2010)

$$k \ll_{\Gamma} \dim_{\mathbb{C}} H^1(\Gamma, V_k) \ll_{\Gamma} \frac{k^2}{\ln k}.$$

(Use: trace formula for \ll and base change for \gg .)

Conjecture

The actual growth is $\sim k$.

More generally, if $[F : \mathbb{Q}] = d$ with $d = r_1 + 2r_2$, then conjecturally

$$\dim_{\mathbb{C}} \mathcal{S}_{(k,\ldots,k)}(\Gamma) \sim k^{r_1+r_2}.$$

Theorem (Marshall, 2012)

$$\dim_{\mathbb{C}} H^1(\Gamma, V_k) \ll_{\Gamma, \epsilon} k^{\frac{5}{3} + \epsilon}, \quad \forall \epsilon > 0.$$

(Use: Emerton's completed cohomology + non-comm. Iwasawa algebra)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Theorem (Marshall, 2012)

$$\dim_{\mathbb{C}} H^1(\Gamma, V_k) \ll_{\Gamma, \epsilon} k^{\frac{5}{3} + \epsilon}, \quad \forall \epsilon > 0.$$

(Use: Emerton's completed cohomology + non-comm. Iwasawa algebra)

Theorem (H., 2018)

$$\dim_{\mathbb{C}} H^1(\Gamma, V_k) \ll_{\Gamma, \epsilon} k^{\frac{3}{2}+\epsilon}, \quad \forall \epsilon > 0.$$

Use: Marshall's approach $+ \mod p$ Local Langlands correspondence for $\operatorname{GL}_2(\mathbb{Q}_p)$.

Theorem (Marshall, 2012)

$$\dim_{\mathbb{C}} H^1(\Gamma, V_k) \ll_{\Gamma, \epsilon} k^{\frac{5}{3} + \epsilon}, \quad \forall \epsilon > 0.$$

(Use: Emerton's completed cohomology + non-comm. Iwasawa algebra)

Theorem (H., 2018)

$$\dim_{\mathbb{C}} H^1(\Gamma, V_k) \ll_{\Gamma, \epsilon} k^{\frac{3}{2}+\epsilon}, \quad \forall \epsilon > 0.$$

Use: Marshall's approach $+ \mbox{ mod } p$ Local Langlands correspondence for ${\rm GL}_2(\mathbb{Q}_p).$

Mod *p* **method**: if $\mathcal{V}_k \subset V_k(\mathbb{Q}_p)$ is an \mathbb{Z}_p -lattice,

 $\dim_{\mathbb{C}} H^{1}(\Gamma, V_{k}(\mathbb{C})) = \dim_{\mathbb{Q}_{p}} H^{1}(\Gamma, V_{k}(\mathbb{Q}_{p})) \leq \dim_{\mathbb{F}_{p}} H^{1}(\Gamma, \mathcal{V}_{k} \otimes \mathbb{F}_{p}).$

(日) (四) (王) (王) (王)

Main result Proofs Proofs Main result Proofs

For K compact p-adic Lie group (e.g. \mathbb{Z}_p , $SL_2(\mathbb{Z}_p)$), define Iwasawa algebra:

$$\mathbb{Z}_p[[K]] = \varprojlim_{K_n} \mathbb{Z}_p[K/K_n].$$

Example: $\mathcal{K} = \operatorname{Ker}(\operatorname{SL}_2(\mathbb{Z}_p) \to \operatorname{SL}_2(\mathbb{F}_p))$, then

$$g_1 = \begin{pmatrix} 1+p & 0 \\ 0 & (1+p)^{-1} \end{pmatrix}, \quad g_2 = \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix}, \quad g_3 = \begin{pmatrix} 1 & 0 \\ p & 1 \end{pmatrix}$$

top. generate K, so $\mathbb{Z}_p[[K]]$ top. generated by $X_i := g_i - 1$; non-commutative.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Main result Proofs
Iwasawa algebras Completed cohomology Proofs

For K compact p-adic Lie group (e.g. \mathbb{Z}_p , $SL_2(\mathbb{Z}_p)$), define Iwasawa algebra:

$$\mathbb{Z}_p[[K]] = \varprojlim_{K_n} \mathbb{Z}_p[K/K_n].$$

Example: $K = \operatorname{Ker}(\operatorname{SL}_2(\mathbb{Z}_p) \to \operatorname{SL}_2(\mathbb{F}_p))$, then

$$g_1 = \begin{pmatrix} 1+p & 0 \\ 0 & (1+p)^{-1} \end{pmatrix}, \quad g_2 = \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix}, \quad g_3 = \begin{pmatrix} 1 & 0 \\ p & 1 \end{pmatrix}$$

top. generate K, so $\mathbb{Z}_p[[K]]$ top. generated by $X_i := g_i - 1$; non-commutative.

Fundamental properties (Lazard, 1965):

- $\mathbb{Z}_p[[K]]$ is noetherian.
- *K* uniform pro- $p \Rightarrow \mathbb{Z}_p[[K]]$ integral domain.
- gradedly Z_p[[K]] is commutative, looks like a polynomial ring.
 (e.g. Gr(Z_p[[K]]) = F_p[p̄, X̄₁, X̄₁, X̄₃].)

Main result Proofs Completed cohom Proofs

Notation:

$$\Lambda = \mathbb{F}_{\rho}[[K]], \quad \tilde{\Lambda}_{\mathbb{Q}_{\rho}} = \mathbb{Z}_{\rho}[[K]][\frac{1}{\rho}],$$

Theorem (Harris, 1979)

Let M be a finitely generated module over Λ (or $\tilde{\Lambda}_{\mathbb{Q}_p}$) and $d = \dim K$.

$$m 1$$
 There exists c \leq d, $\lambda
eq$ 0 such that

dim
$$H_0(K_n, M) = \lambda p^{cn} + O(p^{(c-1)n}), \quad n \to \infty;$$

2
$$c < d \iff M$$
 is torsion (i.e. $M \otimes_{\Lambda} \operatorname{Frac}(\Lambda) = 0$);
3 $H_i(K_n, M) = O(p^{(d-1)n}), \forall i > 1.$

Remark: *c* is called the Gelfand-Kirillov dimension of *M*.

・ロン ・回と ・ヨン ・ヨン

Main result Proofs

Iwasawa algebras Completed cohomology Proofs

Fix prime p, let $\Gamma_n = \Gamma \cap \Gamma(p^n)$, $\hat{\Gamma} = \varprojlim_n \Gamma/\Gamma_n$. Choose $\mathcal{V}_k \subset V_k(\mathbb{Q}_p)$: \mathbb{Z}_p -lattice.

Definition (Emerton, Completed cohomology)

$$\hat{\mathcal{H}}^{j}(\mathcal{V}_{k}) = \varprojlim_{m} \varinjlim_{n} \mathcal{H}^{j}(\Gamma_{n}, \mathcal{V}_{k}/p^{m})$$

 $\hat{\mathcal{H}}^{j}(\mathcal{V}_{k}) = \hat{\mathcal{H}}^{j}(\mathcal{V}_{k})[rac{1}{p}].$

Q Â^j(V_k) admissible (i.e. the dual of Â^j(V_k) is f.g. Z_p[[Î]-module).
 Q Spectral sequence

$$E_2^{ij} := H^i(\hat{\Gamma}, \hat{H}^j(\mathcal{V}_k)) \Rightarrow H^{i+j}(\Gamma, \mathcal{V}_k),$$

 $(\Rightarrow$ reduces to bound $H^i(\hat{\Gamma}, \hat{H}^j(\mathcal{V}_k))$ for i + j = 1.)

$$3 \quad H^{j}(\mathcal{V}_{k}) \cong \hat{H}^{j}(\mathbb{Z}_{p}) \otimes \mathcal{V}_{k}.$$

• $\operatorname{SL}_2(F_p)$ acts on $\hat{H}^j(\mathcal{V}_k)$; $F_p :=$ completion of F at p.

Main	result Proofs	lwasawa algebras Completed cohomology Proofs

The key fact is:

Proposition

The dual of $\hat{H}^{j}(\mathbb{Z}_{p})$ is a torsion $\mathbb{Z}_{p}[[\hat{\Gamma}]][\frac{1}{p}]$ -module.

Proof Key point: $SL_2(\mathbb{C})$ does not admit discrete series.) ($GL_2(\mathbb{C})$ does not contain compact Cartan subgroups)

- 4 回 2 - 4 □ 2 - 4 □

lwasawa algebras Completed cohomology Proofs

The key fact is:

Proposition

The dual of $\hat{H}^{j}(\mathbb{Z}_{p})$ is a torsion $\mathbb{Z}_{p}[[\hat{\Gamma}]][\frac{1}{p}]$ -module.

Proof Key point: $SL_2(\mathbb{C})$ does not admit discrete series.) ($GL_2(\mathbb{C})$ does not contain compact Cartan subgroups)

 $\mathsf{Prop.} \Longrightarrow \mathsf{Thm.} \text{ of Calegari-Emerton.}$

Indeed, $\hat{\Gamma}$ has dimension d = 3 if f(p|p) = 1 and d = 6 if f(p|p) = 2, then Harris' theorem implies

dim
$$H^i(\widehat{\Gamma}(\mathfrak{p}^n), \widehat{H}^j(V_k)) \ll p^{(d-1)n}$$
.

イロト イポト イヨト イヨト

Proof of Marshall's theorem:

• By mod *p* method, it suffices to bound by mod *p* method:

$$\dim_{\mathbb{F}_p} H^i(\widehat{\Gamma},\overline{T}\otimes\overline{\mathcal{V}_k})$$

where $T \subset \hat{H}^{i}(\mathbb{Q}_{p})$, and $\mathcal{V}_{k} \subset V_{k}$ are \mathbb{Z}_{p} -lattices. This holds for any p; we choose p which splits in F, i.e. $p\mathcal{O}_{F} = \mathfrak{p}_{1}\mathfrak{p}_{2}$, so $F_{\mathfrak{p}_{1}} \cong F_{\mathfrak{p}_{2}} \cong \mathbb{Q}_{p}$ and

$$\hat{\Gamma} \subset \mathrm{SL}_2(\mathbb{Z}_p) \times \mathrm{SL}_2(\mathbb{Z}_p).$$

Since Γ is fixed, may assume $\hat{\Gamma} = \operatorname{SL}_2(\mathbb{Z}_\rho) \times \operatorname{SL}_2(\mathbb{Z}_\rho)$ for simplicity.

イロト イポト イヨト イヨト

Proof of Marshall's theorem:

• By mod *p* method, it suffices to bound by mod *p* method:

$$\dim_{\mathbb{F}_p} H^i(\widehat{\Gamma},\overline{T}\otimes\overline{\mathcal{V}_k})$$

where $T \subset \hat{H}^{i}(\mathbb{Q}_{p})$, and $\mathcal{V}_{k} \subset V_{k}$ are \mathbb{Z}_{p} -lattices. This holds for any p; we choose p which splits in F, i.e. $p\mathcal{O}_{F} = \mathfrak{p}_{1}\mathfrak{p}_{2}$, so $F_{\mathfrak{p}_{1}} \cong F_{\mathfrak{p}_{2}} \cong \mathbb{Q}_{p}$ and $\hat{f} = \mathfrak{OL}(\mathbb{Z}_{p})$.

$$\Gamma \subset SL_2(\mathbb{Z}_p) \times SL_2(\mathbb{Z}_p).$$

Since Γ is fixed, may assume $\hat{\Gamma} = \operatorname{SL}_2(\mathbb{Z}_p) \times \operatorname{SL}_2(\mathbb{Z}_p)$ for simplicity.

• Observation (Serre) For char. p modular forms, there is a bijection

$$\mathcal{S}_k(\mathrm{SL}_2(\mathbb{Z})) \iff \mathcal{S}_2(\Gamma_0(p)).$$

Marshall generalized to get: if $k \sim p^n$,

wt k of level
$$\hat{\Gamma} \sim \text{wt 2 of level } \widehat{\Gamma_0(\mathfrak{p}^n)}$$
.

・ロト ・回ト ・ヨト ・ヨト

Main result Proofs Iwasawa algebras Completed cohomology Proofs

Proposition (Marshall)

If (the dual of) \overline{T} is a f.g. torsion module over $\mathbb{F}_p[[\hat{\Gamma}]]$, then

$$\dim_{\mathbb{F}_p} H^i(\widehat{\Gamma_0(\mathfrak{p}^n)}, \overline{T}) \ll p^{(\frac{5}{3}+\epsilon)n}, \ \forall \epsilon > 0.$$

Remark. $\bigcap_{n>1} \widehat{\Gamma_0(\mathfrak{p}^n)} \neq \{1\}$, so no analog of Harris' theorem.

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Main result Proofs Main result Proofs Iwasawa algebras Completed cohomology Proofs

Proposition (Marshall)

If (the dual of) \overline{T} is a f.g. torsion module over $\mathbb{F}_p[[\hat{\Gamma}]]$, then

$$\dim_{\mathbb{F}_{\rho}}H^{i}(\widehat{\Gamma_{0}(\mathfrak{p}^{n})},\overline{T})\ll p^{(\frac{5}{3}+\epsilon)n}, \ \forall \epsilon>0.$$

Remark. $\bigcap_{n>1} \widehat{\Gamma_0(\mathfrak{p}^n)} \neq \{1\}$, so no analog of Harris' theorem.

Proposition (H., 2018)

If, moreover, \overline{T} carries an action of $\mathrm{SL}_2(\mathbb{Q}_p) \times \mathrm{SL}_2(\mathbb{Q}_p)$, then

$$\dim_{\mathbb{F}_p} H^i\big(\widehat{\Gamma_0(\mathfrak{p}^n)},\overline{T}\big) \ll p^{(\frac{3}{2}+\epsilon)n}, \ \forall \epsilon > 0.$$

< □ > < @ > < 注 > < 注 > ... 注

Main result Proofs Wain result Proofs Main result Completed cohomology Proofs

Proposition (Marshall)

If (the dual of) \overline{T} is a f.g. torsion module over $\mathbb{F}_p[[\hat{\Gamma}]]$, then

$$\dim_{\mathbb{F}_p} H^i(\widehat{\Gamma_0(\mathfrak{p}^n)}, \overline{T}) \ll p^{(\frac{5}{3}+\epsilon)n}, \ \forall \epsilon > 0.$$

Remark. $\bigcap_{n\geq 1} \widehat{\Gamma_0(p^n)} \neq \{1\}$, so no analog of Harris' theorem.

Proposition (H., 2018)

If, moreover, \overline{T} carries an action of $\mathrm{SL}_2(\mathbb{Q}_p) \times \mathrm{SL}_2(\mathbb{Q}_p)$, then

$$\dim_{\mathbb{F}_p} H^i\big(\widehat{\Gamma_0(\mathfrak{p}^n)},\overline{T}\big) \ll p^{(\frac{3}{2}+\epsilon)n}, \ \forall \epsilon > 0.$$

Proof. Use mod *p* Langlands correspondence for $GL_2(\mathbb{Q}_p)$, precisely, mod *p* representation theory of $GL_2(\mathbb{Q}_p)$ (with central character):

- Barthel-Livné (1993), Breuil (2001): classify irreducible objects π .
- Paškūnas (2012): deformation theory of π .

(ロ) (同) (E) (E) (E)