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Let k ≥ 2, Γ ⊂ SL2(Z) congruence, Mk(Γ) (resp. Sk(Γ)) space of (cusp)
modular forms of weight k and level Γ. We can compute dimensions of
Mk(Γ) and Sk(Γ) using Riemann-Roch theorem.

Example.

dimCMk(SL2(Z)) =

{
b k

12
c k ≡ 2 mod 12

b k
12
c+ 1 else.

In particular, when k tends to ∞,

dimCMk(SL2(Z)) ∼ c · k.

True for general Γ, i.e. as k →∞, dimCMk(Γ) ∼ k (meaning:
c1k ≤ f (k) ≤ c2k).

Similar for Hilbert modular forms (with growth ∼ kd , where d is the degree of
the totally real field).
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However, for modular forms over SL2 of an imaginary quadratic fields,
no dimension formula is known.

Notation:

F = Q(
√
−d), d > 0 square-free, OF = ring of integers,

SL2(OF ) acts on the hyperbolic 3-space H3 := C× R+:(
a b
c d

)
· (z , r) :=

((az + b)(cz + d) + acr 2, r)

|cz + d |2 + |c|2r 2
.

Definition

A Bianchi group Γ is a congruence subgroup of SL2(OF ).

e.g. p|p prime ideal,

Γ(pn) :=
{(

a b
c d

)
|a− 1, d − 1, b, c ≡ 0 mod pn

}
Γ1(pn) :=

{(
a b
c d

)
|c ≡ 0 mod pn

}
.
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Can define (cuspidal) modular forms (only real analytic functions) over a
Bianchi group Γ of level (k, k); called Bianchi modular forms and denoted by
Mk(Γ), resp. Sk(Γ).

Theorem (Harder)

Sk+2(Γ) ∼= H1
cusp(Γ,Vk(C))

where

- Vk(C) = SymkC2 ⊗ SymkC2, where

- SymkC2 = standard representation of SL2

- H1(Γ,Vk): group cohomology; if XΓ = compatification of Γ\H3,

H1
cusp := Ker[H1(Γ,Vk) ∼= H1(XΓ, Ṽk)→ H1(∂XΓ, Ṽk)]

Remark: (Borel-Wallach) H1
cusp(Γ,Symk ⊗ Syml) = 0, if k 6= l .
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Question: dimensions of Mk(Γ), Sk(Γ) ?

Unknown: no precise formula is known so far. Γ\H3 has no complex structure
(3-dim over R).

Rohlfs (1984): dimC S2(SL2(OF )) ≥ 1
24
ϕ(d)− 1

4
− h(d)

2
, h(d) =class number.

Goal: study the asymptotic behavior of the dimension of H1(Γ,Vk).

1 k fixed, Γ = Γ(pn) with n→∞;

2 Γ fixed, k →∞.

Trivial bound:

1 k fixed ⇒ dimC H
1 � [SL2(OF ) : Γ(pn)];

(use Shapiro’s lemma to reduce to the case Γ1 = 1 is trivial)

2 Γ fixed ⇒ dimC H
1 � (k + 1)2 ∼ k2,

(because Γ is finitely generated.)
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Theorem (Calegari-Emerton, 2009)

If k is fixed and p|p, then

dimC H
1(Γ(pn),Vk)�k

{
p2n if f (p|p) = 1
p5n if f (p|p) = 2.

Remark:

• Trivial bound: |SL2(OF/p)| ∼p3n, p6n (resp.)

• The bound is sharp if f (p|p) = 1 (Kionke-Schwermer, 2015)!

• Proof: Emerton’s completed cohomology + (non-comm.) Iwasawa
algebra.

• Can’t replace Γ(pn) by Γ0(pn) or Γ1(pn), since need
⋂

n≥1 Γ(pn) = {1}.
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If Γ is fixed:

Theorem (Finis-Grunewald-Tirao, 2010)

k �Γ dimC H
1(Γ,Vk)�Γ

k2

ln k
.

(Use: trace formula for � and base change for �.)

Conjecture

The actual growth is ∼ k.

More generally, if [F : Q] = d with d = r1 + 2r2, then conjecturally

dimC S(k,...,k)(Γ) ∼ k r1+r2 .
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Theorem (Marshall, 2012)

dimC H
1(Γ,Vk)�Γ,ε k

5
3

+ε, ∀ε > 0.

(Use: Emerton’s completed cohomology + non-comm. Iwasawa algebra)

Theorem (H., 2018)

dimC H1(Γ,Vk)�Γ,ε k
3
2

+ε, ∀ε > 0.

Use: Marshall’s approach + mod p Local Langlands correspondence for
GL2(Qp).

Mod p method: if Vk ⊂ Vk(Qp) is an Zp-lattice,

dimC H
1(Γ,Vk(C)) = dimQp H

1(Γ,Vk(Qp)) ≤ dimFp H
1(Γ,Vk ⊗ Fp).
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For K compact p-adic Lie group (e.g. Zp, SL2(Zp)), define Iwasawa algebra:

Zp[[K ]] = lim←−
Kn

Zp[K/Kn].

Example: K = Ker(SL2(Zp)→ SL2(Fp)), then

g1 =
( 1+p 0

0 (1+p)−1

)
, g2 =

(
1 p
0 1

)
, g3 =

(
1 0
p 1

)
top. generate K , so Zp[[K ]] top. generated by Xi := gi − 1; non-commutative.

Fundamental properties (Lazard, 1965):

- Zp[[K ]] is noetherian.

- K uniform pro-p ⇒ Zp[[K ]] integral domain.

- gradedly Zp[[K ]] is commutative, looks like a polynomial ring.
(e.g. Gr(Zp[[K ]]) = Fp[p̄, X̄1, X̄1, X̄3].)
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Notation:

Λ = Fp[[K ]], Λ̃Qp = Zp[[K ]][
1

p
],

Theorem (Harris, 1979)

Let M be a finitely generated module over Λ (or Λ̃Qp ) and d = dimK.

1 There exists c ≤ d, λ 6= 0 such that

dimH0(Kn,M) = λpcn + O(p(c−1)n), n→∞;

2 c < d ⇐⇒ M is torsion (i.e. M ⊗Λ Frac(Λ) = 0);

3 Hi (Kn,M) = O(p(d−1)n), ∀i ≥ 1.

Remark: c is called the Gelfand-Kirillov dimension of M.
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Fix prime p, let Γn = Γ ∩ Γ(pn), Γ̂ = lim←−n
Γ/Γn. Choose Vk ⊂ Vk(Qp):

Zp-lattice.

Definition (Emerton, Completed cohomology)

Ĥ j(Vk) = lim←−
m

lim−→
n

H j(Γn,Vk/pm)

Ĥ j(Vk) = Ĥ j(Vk)[
1

p
].

1 Ĥ j(Vk) admissible (i.e. the dual of Ĥ j(Vk) is f.g. Zp[[Γ̂]]-module).

2 Spectral sequence

E ij
2 := H i (Γ̂, Ĥ j(Vk))⇒ H i+j(Γ,Vk),

(⇒ reduces to bound H i (Γ̂, Ĥ j(Vk)) for i + j = 1.)

3 H j(Vk) ∼= Ĥ j(Zp)⊗ Vk .

4 SL2(Fp) acts on Ĥ j(Vk); Fp := completion of F at p.
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The key fact is:

Proposition

The dual of Ĥ j(Zp) is a torsion Zp[[Γ̂]][ 1
p

]-module.

Proof Key point: SL2(C) does not admit discrete series.) (GL2(C) does not
contain compact Cartan subgroups)

Prop. =⇒ Thm. of Calegari-Emerton.

Indeed, Γ̂ has dimension d = 3 if f (p|p) = 1 and d = 6 if f (p|p) = 2, then
Harris’ theorem implies

dimH i (Γ̂(pn), Ĥ j(Vk))� p(d−1)n.
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Proof of Marshall’s theorem:

• By mod p method, it suffices to bound by mod p method:

dimFp H
i (Γ̂,T ⊗ Vk)

where T ⊂ Ĥ i (Qp), and Vk ⊂ Vk are Zp-lattices. This holds for any p;
we choose p which splits in F , i.e. pOF = p1p2, so Fp1

∼= Fp2
∼= Qp and

Γ̂ ⊂ SL2(Zp)× SL2(Zp).

Since Γ is fixed, may assume Γ̂ = SL2(Zp)× SL2(Zp) for simplicity.

• Observation (Serre) For char. p modular forms, there is a bijection

Sk(SL2(Z)) ←→ S2(Γ0(p)).

Marshall generalized to get: if k ∼ pn,

wt k of level Γ̂ ∼ wt 2 of level Γ̂0(pn).
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Proposition (Marshall)

If (the dual of) T is a f.g. torsion module over Fp[[Γ̂]], then

dimFp H
i(Γ̂0(pn),T

)
� p( 5

3
+ε)n, ∀ε > 0.

Remark.
⋂

n≥1 Γ̂0(pn) 6= {1}, so no analog of Harris’ theorem.

Proposition (H., 2018)

If, moreover, T carries an action of SL2(Qp)× SL2(Qp), then

dimFp H
i(Γ̂0(pn),T

)
� p( 3

2
+ε)n, ∀ε > 0.

Proof. Use mod p Langlands correspondence for GL2(Qp), precisely, mod p
representation theory of GL2(Qp) (with central character):

– Barthel-Livné (1993), Breuil (2001): classify irreducible objects π.

– Paškūnas (2012): deformation theory of π.
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– Paškūnas (2012): deformation theory of π.

Yongquan HU Asymptotic growth of the cohomology of Bianchi groups



Main result
Proofs

Iwasawa algebras
Completed cohomology
Proofs

Proposition (Marshall)

If (the dual of) T is a f.g. torsion module over Fp[[Γ̂]], then

dimFp H
i(Γ̂0(pn),T

)
� p( 5

3
+ε)n, ∀ε > 0.

Remark.
⋂

n≥1 Γ̂0(pn) 6= {1}, so no analog of Harris’ theorem.

Proposition (H., 2018)

If, moreover, T carries an action of SL2(Qp)× SL2(Qp), then

dimFp H
i(Γ̂0(pn),T

)
� p( 3

2
+ε)n, ∀ε > 0.

Proof. Use mod p Langlands correspondence for GL2(Qp), precisely, mod p
representation theory of GL2(Qp) (with central character):
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