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Motivation

• In statistical physics, many lattices models which generate
random shapes.

• While the mesh of these models tends to zero, the random
shapes converge in some sense to some random fractal
shapes, —the scaling limits. And

• The distribution of the scaling limit is invariant under
conformal maps.

• These phenomena have been observed by Statistical Physicists
for a long time. But for most cases, the rigorous proof is
missing, and little is known about the scaling limit.
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Recent Progress

• The situation was changed since Oded Schramm introduced
the Schramm-Loewner evolution (SLE) in 1999.

• SLE with different parameters have been identifed as the
scaling limits of a number of lattice models.



Critical site percolation

Critical site percolation on triangular lattice (by Schramm)
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Uniform Spanning Tree

SLE(8)
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Harmonic explorer

SLE(4)
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Discrete Gaussian Free Field

SLE(4)
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FK-Ising model

SLE( 16
3 )
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Conformal Maps

How to code the information of such a curve?
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Loewner Equation

How to code the information of such a curve?

Answer: Loewner equation.

0

γ(t)

γ(t + s)

gt(z)

W(t)

gt(γ[0,∞))

gt(γ(t + s))
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Loewner Equation

Theorem (Schramm 2001)

If the curve is parameterized such that gt(z) = z + 2t
z + ... at ∞,

then

∂tgt(z) =
2

gt(z)−W (t)

and W (t) is a continuous real valued function.

The equation describes how the maps gt evolve as γt grows.

Key tool:

f (z) =

∫
∂D

f (w)HD(z ,w)d |w |

where HD(z ,w) is the Poisson kernel.



Poisson Kernels 
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Loewner equation

(1) Given a continuous function W (t), one can get the conformal

map from the ODE.

(2) Can one get a curve? Not necessarily a curve.

(3) W (t): Holder- 1
2 continuity.

⇒ γt is a simple curve (Rhode 2005).
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Brownian Motion

1-dim standard Brownian Motion:

(1) B0 = 0¶

(2) For 0 ≤ t1 < t2 < t3 < ... < tn,
Bt2 − Bt1 ,Bt3 − Bt2 , ...,Btn − Btn−1 are independent;

(3) For 0 ≤ s ≤ t§Bt − Bs ∼ N(0, t − s)¶

(4) With probability 1§the sample path t → Bt is continuous.

N(0, t − s) =
∫

(2π(t − s))−1/2exp(−x2/2(t − s))dx ,
with mean 0, and variance t − s.
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Conformal invariance of planar Brownian motion

B(t) = B1(t) + iB2(t)
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Brownian Motion
The planar Brownian motions are conformally invariant.
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The definition of SLE

Definition (Schramm 2001)

∂tgt(z) =
2

gt(z)−
√
κBt

, g0(z) = z

· Stochastic Loewner Equation—-Schramm-Loewner Equation

· SLE: driving function Bt .

· SLE Trace γt = g−1
t (
√
κBt),

a continuous curve never crosses itself.

· The process (gt(z) : t ≥ 0) is called the Chordal SLE (κ).
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Main properties of SLE

With probability one, the following properties are satisfied:

• Schramm-Rohde (2001):

• If κ > 0, γκ is fractal; As κ ↑ , γκ becomes more fractal;
Phase transition at κ = 4 and κ = 8.
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Main properties of SLE

· Vincent Beffara (2007): The Hausdorff dimension of the trace:

DimHγκ = min{1 +
κ

8
, 2}
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Other versions of SLE

Radial SLE:

∂tgt(z) = gt(z)
e i
√
κBt + gt(z)

e i
√
κBt − gt(z)

, g0(z) = z ∈ D

Whole plane SLE:

∂tgt(z) = gt(z)
e i
√
κBt + gt(z)

e i
√
κBt − gt(z)

, lim
t→−∞

etgt(z) = z ,∀z ∈ C\{0}

Strip SLE:

∂tgt(z) = coth
gt(z)−

√
κBt

2
, g0(z) = z ∈ Sπ

Sπ := {x + iy : x ∈ R, 0 < y < π}
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Brownian frontier

· Mandelbrot conjecture£££1987¤¤¤.

· (Schramm-Lawler-Werner 2001) dimH = 4
3
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Brownian frontier

Key point:

· SLE(8/3)=⇒ Brownian intersection exponent ξ(2, 0) = 2
3

· dimH(frontier)=2− ξ(2, 0) =⇒ dimH= 4
3

· Dividing K BM into k groups, E (R) is the event that the paths

of any two different groups are non-intersecting.

ξ(p1, p2, ..., pk) = lim
R→∞

logP[E (R)]

R



Introduction Conformal Maps Schramm Loewner Evolution Applications Converging to SLE Problems



Introduction Conformal Maps Schramm Loewner Evolution Applications Converging to SLE Problems

Converging to SLE

Theorem (Smirnov 2001)

The exploration path of the triangular percolation model in the

upper half plane converges to SLE (6) weakly.

Stanislav Smirnov:winner of the 2010 Fields Medal.
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FK-Ising model

SLE( 16
3 )



Introduction Conformal Maps Schramm Loewner Evolution Applications Converging to SLE Problems

FK-Ising model

Theorem (Smirnov 2010)

If q = 2, p =
√
q

1+
√
q ,then the FK-Ising exploration path γδ

converging weakly to SLE ( 16
3 ).

Key Point: Discrete holomorphic function

Same method:Critical Ising Model → SLE (3)



Brownian Loop Measure
Defnition(Lawler-Werner 2003)
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Brownian Loop Measure 
（Wiener Measure） 



Cardy-Gamsa’s formula

z

w

0

µloopH (·) =?



Cardy-Gamsa Formula  
（predicted  in  2006） 



Han-W-Zinsmeister (2018)

Theorem.
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Discrete models converging to SLE

(1) Uniform spanning Tree model →SLE(8)
(Schramm-Lawler-Werner 2005);

(2) Harmonic exploration model →SLE(4)
(Schramm-Sheffield 2004);

(3) Discrete Gaussian Free Field →SLE(4)
(Schramm-Sheffield 2004);

(4) Loop Erased Random Walk →SLE(2)
(Schramm-Lawler-Werner 2005);

(5) Ising Model →SLE(3)(Smirnov 2013);

(6) FK-Ising Model (Random Cluster Model)
→SLE(16

3 )(Smirnov 2013);

(7) (Conjecture) Self-avoiding random walk →SLE(8
3).
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Thank You



Brownian Loop Measure
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