
Spherical configurations and quadrature methods for integral 

equations of the second kind 

 

Congpei An, Guizhou University, China 
 

We propose and analyze a product integration method for the second-kind integral 

equation with weakly singular and continuous kernels on the unit sphere 𝑆2. We 

employ quadrature rules that satisfy the Marcinkiewicz--Zygmund property to 

construct hyperinterpolation for approximating the product of the continuous kernel 

and the solution, in terms of spherical harmonics. By leveraging this property, we 

significantly expand the family of candidate quadrature rules and establish a 

connection between the geometrical information of the quadrature points and the 

error analysis of the method. We then utilize product integral rules to evaluate the 

singular integral with the integrand being the product of the singular kernel and each 

spherical harmonic.  We derive a practical 𝐿∞error bound, which consists of two 

terms: one controlled by the best approximation of the product of the continuous 

kernel and the solution, and the other characterized by the Marcinkiewicz--Zygmund 

property and the best approximation polynomial of this product. Numerical 

examples validate our numerical analysis. This is a joint work with Dr. Haoning Wu.  

 

 

Digital Twins and Optimization 

 

Harbir Antil, George Mason University 
 

 

With recent advancements in computing resources and interdisciplinary 

collaborations, a new research field called Digital Twins (DTs) is starting to emerge. 

Data from sensors located on a physical system is fed into its DT, the DT in turn 

help make decisions about the physical system. This cycle then continues for the 

life-time of the physical system. A typical example is a bridge or a human heart. 

 

In many cases, these problems can be cast as optimization problems with finite or 

infinite dimensional (partial differential equations) constraints. This talk will 

provide an introduction to this topic. Special attention will be given to: 1) 

Optimization algorithms that are adaptive and can handle inexactness, e.g., Trust-

Regions and ALESQP; 2) Optimization under uncertainty and tensor train 

decomposition to overcome the curse of dimensionality; 3) Reduced order modeling 

for dynamic optimization using randomized compression. 



 

Additionally, the DT framework may require coupling mutiphysics / systems / data 

with very different time scales. Keeping this in mind, a newly introduced notion of 

barely coupled problems will be discussed. 

 

Realistic examples of DTs to identify weakness in structures such as bridges, wind 

turbines, electric motors, and neuromorphic imaging will be considered. 

 

 

 

Learning a generalized multiscale prolongation operator 

 

Eric T. Chung, CUHK 

 
Multigrid preconditioners are one of the most efficient techniques for solving large 

sparse linear systems. In this research, we address Darcy flow problems with random 

permeability using the conjugate gradient method, enhanced by a two-grid 

preconditioner based on a generalized multiscale prolongation operator, which has 

been demonstrated to be stable for high contrast profiles. To circumvent the need for 

repeatedly solving spectral problems with varying coefficients, we harness deep 

learning techniques to expedite the construction of the generalized multiscale 

prolongation operator. Considering linear transformations on multiscale basis have 

no impact on the performance of the preconditioner, we devise a loss function by the 

coefficient-based distance between subspaces instead of 𝐿2-norm of the difference 

of the corresponding multiscale bases. We discover that leveraging the inherent 

symmetry in the local spectral problem can effectively accelerate the neural network 

training process. In scenarios where training data are limited, we utilize the 

Karhunen-Loève expansion to augment the dataset. Extensive numerical 

experiments with various types of random coefficient models are exhibited, showing 

that the proposed method can significantly reduce the time required to generate the 

prolongation operator while maintaining the original efficiency of the two-grid 

preconditioner. The research is partially supported by the Hong Kong RGC General 

Research Fund (Projects: 14304021 and 14302620). 

 

 

 

 

 

 



Multicontinuum homogenization and applications 

 

Yalchin Efendiev, Texas A&M University, College Station 
 

In this talk, I will discuss a general approach for homogenization that uses multiple 

macroscopic continua. I will discuss its relation to existing methods and show some 

applications. 

 

 

Neural Inverse Operators for Solving PDE Inverse Problems 

 

Bjorn Engquist, UT Austin 
 

A large class of inverse problems for PDEs are only well-defined as mappings from 

operators to functions. Existing operator learning frameworks map functions to 

functions and need to be modified to learn inverse maps from data. We propose an 

architecture termed Neural Inverse Operators (NIOs) to solve these PDE inverse 

problems. Motivated by the underlying mathematical structure and PDE constrained 

optimization techniques, NIO is based on a composition of DeepONets and Fourier 

Neural Operators to approximate mappings from operators to functions. 

Experiments will be presented to demonstrate the performance of the NIOs. They do 

very well compared to existing neural network baselines in solving PDE inverse 

problems robustly and accurately. The examples include the classical Calderon 

problem and optical and seismic imaging. PDE-constrained optimization methods 

currently can address more challenging problems, but the advantage of NIOs is that 

they are orders of magnitude faster. 

 

 

Low-rank approximation of high-dimensional functions in isotropic 

and anisotropic Sobolev spaces 

 

Helmut Harbrecht, University of Basel, Switzerland 

 
Tensor approximation schemes provide a powerful tool to approximate high-

dimensional problems. In order to clarify which problems can efficiently be 

approximated by tensor approximation schemes, we analyze in this talk the 



approximation power of such schemes when applied to high-dimensional functions 

in the continuous setting. To this end, we assume that the function to be 

approximated lies either in an isotropic Sobolev space or an anisotropic Sobolev 

space, possibly equipped with dimension weights. We apply successively the 

truncated singular value decomposition in order to discuss the cost when 

approximating the function under consideration in the continuous analogues of 

tensor formats such as the Tucker tensor format or the tensor train format. 

 

Analog quantum simulation for partial differential equations 

 

Shi Jin, Shanghai Jiao Tong University 
 

  

To simulation PDEs using quantum simulation, we introduce a method called 

Schrödingerisation, that directly maps D-dimensional linear PDEs onto a (𝐷 + 1)-

qumode quantum system of Schrodinger type, where analog or continuous-variable 

(CV) Hamiltonian simulation on 𝐷 + 1 qumodes can be used. This very simple 

methodology does not require one to discretise PDEs first, and it is not only 

applicable to linear PDEs but also to some nonlinear PDEs and systems of nonlinear 

ordinary differential equations. This also raises the possibility that some PDEs may 

be simulated directly on analog quantum systems by using Hamiltonians natural for 

those quantum systems. 

 

Furthermore, we present a simplified analog quantum simulation protocol for 

preparing quantum states that embed solutions of parabolic partial differential 

equations, including the heat, Black-Scholes and Fokker-Planck equations. The key 

idea is to approximate the heat equations by a system of hyperbolic heat equations 

that involve only first-order differential operators. This scheme requires relatively 

simple interaction terms in the Hamiltonian, which are the electric and magnetic 

dipole moment-like interaction terms that would be present in a Jaynes-Cummings-

like model. For a d-dimensional problem, we show that it is much more appropriate 

to use a single d-level quantum system- a qudit-instead of its qubit counterpart, and  

𝑑 + 1 qumodes. The total resource cost is efficient in d and precision error, and has 

potential for realisability for instance in cavity and circuit QED systems. 
 

 

 



 

 

Proximal random reshuffling under local Lipschitz continuity 

 

Lexiao Lai, HKU 

 
We study proximal random reshuffling for minimizing the sum of locally Lipschitz 

functions and a proper lower semicontinuous convex function without assuming 

coercivity or the existence of limit points. The algorithmic guarantees pertaining to 

near approximate stationarity rely on a new tracking lemma linking the iterates to 

trajectories of conservative fields. One of the novelties in the analysis consists in 

handling conservative fields with unbounded values. 

 

 

 

Algorithmic Stability of Sharpness Aware Minimization 

 

Yunwen Lei, HKU 
 

Sharpness aware minimization (SAM) aims to find flat minima by introducing a 

perturbation step in gradient methods, which has achieved an impressive success in 

improving the generalization behavior. An important problem is to understand how 

the perturbation affects the generalization of SAM, which has not been well studied 

in the literature. In this talk, we leverage the concept of algorithmic stability to study 

the generalization performance of SAM. We first build the approximate 

nonexpansiveness of the gradient operator for SAM, based on which we derive 

stability bounds as measured by the norm of the model weights. Then, we develop 

convergence rates in terms of function values for minibatch SAM, which is stronger 

than the existing rates on gradient norms for convex problems. Our results clearly 

show how the batch size and the perturbation size affect both the optimization and 

generalization, and how they should be balanced to achieve the best performance in 

prediction. 

 

 

 

 

 



 

 

 

A discretization-invariant extension of deep operator networks and 

its application in multiscale problems 

 

Wing Tat Leung, City University of Hong Kong 

 
Operator learning trains a neural network to map functions to functions. An ideal 

operator learning framework should be mesh-free, meaning it doesn't require a 

specific discretization of the input functions during training, can handle input and 

output functions on different domains, and supports varying grids between samples. 

We present a mesh-free neural operator for solving parametric partial differential 

equations. Our Basis Enhanced Learning Network (BelNet) projects input functions 

into a latent space and reconstructs output functions with a unique feature that allows 

the network to learn "basis" functions during training. This approach generalizes the 

universal approximation theory of nonlinear operators by Chen and Chen to 

accommodate differences in input and output meshes. Through various challenging 

high-contrast and multiscale problems, we show that our method outperforms 

existing operator learning techniques and provides greater flexibility in the sampling 

and discretization process. 

 

 

Wavelet-based Edge Multiscale Finite Element Methods 

 

Guanglian Li, HKU 

 
We propose a novel efficient and robust Wavelet-based Edge Multiscale Finite 

Element Method (WEMsFEM) to solve PDEs with heterogeneous coefficients. The 

main idea is to first establish a local splitting of the solution over a local region by a 

local bubble part and local Harmonic extension part, and then derive a global 

splitting by means of Partition of Unity. This facilitates a representation of the 

solution as a summation of a global bubble part and a global Harmonic extension 

part, where the first part can be computed locally in parallel. To approximate the 

second part, we construct an edge multiscale ansatz space locally with hierarchical 

bases or Haar wavelets as the local boundary data that has a guaranteed 

approximation rate without higher regularity requirement on the solution. The key 



innovation of this proposed method lies in a provable convergence rate with little 

restriction on the mesh size or the regularity of the solution. Its convergence rate 

with respect to the computational degree of freedom is rigorously analyzed for many 

multiscale problems, including the elliptic problems with heterogeneous coefficients, 

convection dominated diffusion problems and Maxwell equations with 

heterogeneous permittivity. Moreover, they are verified by extensive 2-d and 3-d 

numerical tests. This is a joint work with Eric Chung (CUHK, Hong Kong), Yalchin 

Efendiev (Texas A&M University, College Station), Shubin Fu (Eastern Institute of 

Technology, P.R. China) and Yueqi Wang (HKU). 

 

Random Batch Methods and Kinetic Monte Carlo for Interacting Particle 

Systems with Lévy Noise 

Jian-Guo Liu, Duke University  
 

The random batch method (RBM) has significantly reduced computational costs 

across various applications in machine learning and data science. Building on this 

concept, we have developed efficient algorithms for simulating large-scale 

interacting particle systems comprising 𝑁 indistinguishable particles. These systems 

model diverse phenomena in natural and social sciences, ranging from molecular 

dynamics to collective behavior in biological and social contexts. 

 

The central idea of RBM involves randomly selecting small batches of size 𝑝 ≪ 𝑁, 

where particles within a batch interact with each other over a short time. To preserve 

the statistical properties of the original system, the weak interactions (of strength 
1

𝑁−1
) are replaced by stronger interactions (of strength 

1

𝑝−1
) within each batch. This 

innovative replacement reduces the computational complexity per time step from 

𝑂(𝑁2) to𝑂(𝑝𝑁) , while maintaining an unbiased approximation of the force or 

velocity field in the original system. Remarkably, RBM with replacement has a 

fundamental equivalence with the well-established Kinetic Monte Carlo (KMC) 

commonly used in particle simulations. 

 

In many real-world scenarios, the underlying random fluctuations are non-Gaussian, 

particularly in contexts where heavy-tailed data distributions arise, such as COVID-

19 mortality statistics and hurricane-related economic losses. Such non-Gaussian 

phenomena call for Lévy noise, which accommodates jumps and extreme variations. 



Recent research has also employed Lévy-type diffusion approximations for 

stochastic gradient descent (SGD) to better address heavy-tailed distributions in data. 

The RBM framework seamlessly extends to handle systems driven by Lévy noise, 

offering robust theoretical guarantees for accuracy and convergence. 

 

In this talk, I will discuss the theoretical foundations and practical applications of 

random batch methods, with a focus on their integration into stochastic gradient 

descent and interacting particle systems driven by Lévy noise. 

 

 

Autonomous robotic interaction with flow fields 

 

Jia Pan, HKU 
 

In this talk, we will introduce our recent work on how to enable the robot to 

intelligently interact and manipulate flow fields, using ocean flow, human crowds, 

and transportation flow as typical examples. We will demonstrate that autonomous 

robots with sophisticated algorithms can efficiently recover the global properties of 

the flow field, interactively query local details of the field, and effectively 

manipulate the entire flow to achieve optimal flow behaviors. We will discuss 

interesting applications such as autonomous underwater robot, human-robot 

interactions, and intelligent transportation. 
 

 

 

Executable Quantum Algorithms for Efficient PDE Simulations 

 

Daniel Peterseim, University of Augsburg 

 
In this talk, we present an executable quantum algorithm designed to solve second-

order linear elliptic partial differential equations (PDEs) discretized by d-linear finite 

elements on Cartesian grids within bounded d-dimensional domains. A key feature 

of this approach is the BPX preconditioner, which transforms the linear system into 

a well-conditioned form optimized for quantum computation. The algorithm 

achieves a complexity that scales linearly with 1/tol for fixed dimension d, allowing 

the computation of relevant functionals of the solution to a given tolerance tol > 0. 



We discuss the practical implementation of the quantum circuit and present 

numerical results from both quantum simulators and real quantum computers, 

demonstrating the applicability of the algorithm on currently accessible quantum 

hardware. In addition, we briefly introduce a novel framework for addressing 

nonlinear problems using quantum computing. 

 

 

 

Enhancing CFD simulations combining model order reduction and 

scientific machine learning 

 

Gianluigi Rozza, SISSA 
 

Partial differential equations (PDEs) are invaluable tools for modeling complex 

physical phenomena. However, only a limited number of PDEs can be solved 

analytically, leaving the majority of them requiring computationally expensive 

numerical approximations. To address this challenge, reduced order models (ROMs) 

have emerged as a promising field in computational sciences, offering efficient 

computational tools for real-time simulations. In recent years, deep learning 

techniques have played a pivotal role in advancing efficient ROM methods with 

exceptional generalization capabilities and reduced computational costs [1, 2, 3]. In 

this talk we explore how classical ROM techniques can be elevated through the 

integration of some deep learning models. We will introduce hybrid approaches, 

which consider both physics-based and purely data-driven techniques [4, 5, 6, 7], as 

well as aggregated ones, where the model is built as the combination of different 

pre-trained models [8]. 

 

Our discussion encompasses a review of existing (intrusive and data driven) 

approaches to enhancing ROM by means of neural operators with applications in 

Computational Fluid Dynamics, also in presence of turbulence and compressibility. 
 

 

[1] Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., & Silveira, L. M. 

(2021). System-and data-driven methods and algorithms (p. 378). De Gruyter. 

[2] Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., & Miguel Silveira, 

L. (2020). Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms (p. 

348). De Gruyter. 

[3] Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., & Miguel Silveira, 

L. (2020). Model order reduction: Volume 3: Applications (p. 466). De Gruyter. 



[4] Ivagnes, A., Stabile, G., Mola, A., Iliescu, T., & Rozza, G. (2023). Hybrid data-driven 

closure strategies for reduced order modeling. Applied Mathematics and Computation, 448, 

127920 

[5] Ivagnes, A., Stabile, G., & Rozza, G. (2024). Parametric Intrusive Reduced Order Models 

enhanced with Machine Learning Correction Terms. arXiv preprint arXiv:2406.04169. 

[6] Zancanaro, M., Mrosek, M., Stabile, G., Othmer, C., & Rozza, G. (2021). Hybrid neural 

network reduced order modelling for turbulent flows with geometric parameters. Fluids, 6(8), 

296. 

[7] Stabile, G., Zancanaro, M., & Rozza, G. (2020). Efficient geometrical parametrization for 

finite‐volume‐based reduced order methods. International journal for numerical methods in 

engineering, 121(12), 2655-2682. 

[8] Ivagnes, A., Tonicello, N., Cinnella, P., & Rozza, G. (2024). Enhancing non-intrusive 

reduced-order models with space-dependent aggregation methods. Acta Mechanica, 1-30. 

 

 

 

Convection-Diffusion Equation: An axiomatized Framework for 

Neural Networks 

Zuoqiang Shi, Tsinghua 

 

Bridging neural networks with partial differential equations holds significant 

importance, as it not only enhances the interpretability of neural networks but also 

sheds light on designing network architectures. In this talk, we establish convection-

diffusion equation models based on rigorous theoretical analysis. The convection-

diffusion equation model not only covers existing network structures, but also 

illuminates novel network design, COnvection dIffusion Networks (COIN). 

Numerical results demonstrate the effectiveness of COIN in various benchmarks, as 

well as its potential in novel tasks such as disease prediction. 

 

Parametric PDE with Many Parameters– Kernel Methods and Deep 

Neural Networks 

Ian H. Sloan, University of New South Wales, Sydney Australia 

 

Parametric PDE with a large number of parameters, perhaps in the hundreds, face 

the “Curse of dimensionality”. After an introduction, the talk will describe recent 

work on a direct “kernel” method, and then describe work in progress on a deep 



learning approach to a fast surrogate. Collabo rators on these projects include 

Frances Kuo, Vesa Kaarnioja, Fabio Nobile, Yoshihito Kazashi, Alec Gilbert, Alex 

Keller and Dirk Nuyens.  

 

Operator Learning for Nonsmooth Optimal Control of PDEs 

 

Yongcun Song, CityU 
 

Optimal control problems with nonsmooth objectives and partial differential 

equation (PDE) constraints are challenging, mainly because of the underlying 

nonsmooth and nonconvex structures and the demanding computational cost 

for solving multiple high-dimensional and ill-conditioned systems after mesh-based 

discretization. To mitigate these challenges numerically, we propose an operator 

learning approach combined with an effective primal-dual optimization idea that can 

decouple the treatment of the control and state variables so that each resulting 

iteration only requires solving two PDEs. Our main purpose is to construct neural 

surrogate models for the involved PDEs by operator learning, allowing the solution 

of a PDE to be obtained with only a forward pass of the neural network. The resulting 

algorithmic framework offers a hybrid approach that combines the flexibility and 

generalization of operator learning with the model-based nature and structure-

friendly efficiency of primal-dual-based algorithms. The primal-dual-based operator 

learning approach offers numerical methods that are mesh-free, easy to implement, 

and adaptable to various optimal control problems with nonlinear PDEs. Notably, 

the neural surrogate models can be reused across iterations and parameter settings 

hence, computational cost can be substantially alleviated. We validate the 

effectiveness and efficiency of the primal-dual-based operator learning approach 

across a range of typical optimal control problems with nonlinear PDEs. 

 

 

Hessian estimates in the score based generative models 

 

Zhongjian Wang, NTU 
 

The Hessian estimates of the score potential, or Lipchitz estimate of score, play 

important roles in the well-posedness and convergence analysis of the score based 

generative models. In this talk, I will discuss the approaches of estimate in three 

different applicational scenarios: lower bound in singular case, polynomial in 

dimension upper bound for finite dimensional, trace type upper bound in the infinite 



dimensional near Gaussian setup. Our approaches are application of PDE regularity 

theories on Fokker-Planck equation with OU drift and applies to both KL and 

Wasserstein bounds. 

 

 

Small and Large Atomic/Language Models for Materials Science 

 

Tongqi Wen, HKU 
 

 “AI for Materials” aims to facilitate the design of new materials with exceptional 

properties and enhance our understanding of composition-structure-property 

relationships by incorporating advanced AI techniques. This talk will be divided into 

two parts: the application of (i) small/large atomic models and (ii) large language 

models in materials science. In the first part, we will discuss the application of small 

AI atomic models in atomistic simulations, focusing on defect properties in 

structural materials including Ni and Ti-based alloys. We will then present our latest 

work on large atomic models for alloys covering 53 elements in the periodic table. 

In the second part, we will explore the development of materials-specific large 

language models built on general LLMs (GPT-4, Gemini-Pro, …) employing prompt 

engineering techniques for materials property classification and prediction. Our 

future research will focus on harnessing the power of AI, particularly language 

models and deep neural networks, to design advanced materials for structural, 

ferroelectric, and battery applications and understand relevant physical phenomena. 

 

 

Efficient Temporal GNN Training via Staleness-Aware Pipeline 

 

Chuan Wu, HKU 
 

Memory-based Temporal Graph Neural Networks (MTGNNs) are a class of 

temporal graph neural networks that utilize a node memory module to retain long-

term temporal dependencies, leading to superior performance compared to memory-

less counterparts. For MTGNN training, the iterative reading and updating process 

of the memory module to obtain up-to-date information needs to follow the temporal 

dependencies, incurring significant overhead and limiting training throughput. In 

this talk, I will share our recent work on an efficient learning framework for memory-

based TGNNs that maximizes training throughput while maintaining model 

accuracy. Our design addresses challenges associated with fetching and updating 



node memory states in MTGNNs by integrating staleness into the memory module. 

We introduce an online pipeline scheduling algorithm that strategically breaks 

temporal dependencies with minimal staleness and delays memory fetching to obtain 

fresher memory states. We also propose a staleness mitigation mechanism to 

enhance training convergence and model accuracy.  

 

Multiscale computational method for radiative transfer equation 

and Landau-Lifschitz equation in heterogeneous media 

 

Lei Zhang, Shanghai Jiaotong University 

 

Multiscale computational methods are designed to capture fine-scale 

features while maintaining a manageable computational cost at coarser 

levels. In recent decades, methods such as numerical homogenization 

have matured, particularly for benchmark problems such as multiscale 

elliptic PDEs. In this talk, I will present two examples that extend beyond 

these benchmarks: the radiative transfer equation, which includes velocity 

dependence, and the Landau-Lifshitz equation in micromagnetics, a 

nonlinear vectorial equation—both exhibit spatial heterogeneity. We will 

formulate multiscale computational methods for these cases, present 

analyses and numerical experiments, and discuss the unique 

characteristics of each PDE. 

 

 

 

DeepParticle: learning invariant measure by a deep neural network 

minimizing Wasserstein distance on data generated from an 

interacting particle method 

 

Zhiwen Zhang, HKU 

 

High-dimensional partial differential equations (PDEs) pose significant 

computational challenges, particularly when solutions exhibit large 

gradients or concentrations at unknown locations. Traditional mesh-based 

methods often struggle with such complexities. In this talk, we introduce 



DeepParticle, an innovative approach that integrates deep learning (DL), 

optimal transport (OT), and interacting particle (IP) methods to address 

these challenges. Through a case study of Kolmogorov-Petrovsky-

Piskunov (KPP) front speeds in incompressible flows, we demonstrate the 

effectiveness of our method. Our approach reduces the PDE problem to 

the computation of the principal eigenvalue of an advection-diffusion 

operator. By leveraging the Feynman-Kac formula, we derive a stochastic 

representation that enables the use of a genetic IP algorithm. This 

algorithm evolves particle distributions to a time-invariant measure, from 

which the front speed is extracted. To efficiently learn this family of 

invariant measures, we train a physically parameterized deep neural 

network using affordable data generated by IP computations at moderate 

Péclet numbers. This trained network then allows us to predict invariant 

measures and, consequently, front speeds at larger Péclet numbers, where 

direct IP computations are prohibitively expensive. Our methodology not 

only addresses the computational bottlenecks of traditional methods but 

also extends to more general stochastic particle dynamics problems. For 

example, we showcase its application in learning and generating 

aggregation patterns in Keller-Segel chemotaxis systems, highlighting the 

versatility and broad applicability of the DeepParticle approach. 

 

 

 

Weak Generative Sampler to Solve High - Dimensional PDEs for 

Stochastic Models 

 

Xiang Zhou, CityU 

 

The solution of many typical high-dimensional PDEs (such as the Fokker-

Planck, and McKean-Vlasov equations) is associated with a probability 

distribution. To solve such PDEs by deep learning techniques is usually 

to simply find a neural network for the density function itself, subject to 

certain positivity and normalization conditions. The further utilization of 

the solution requires random sampling again. We introduce a framework 

of Weak Generative Sampler (WGS) to both solve the PDE and generate 



samples more efficiently than the PINN and the Ritz method. Our 

proposed loss function is based on the weak form and the generic 

probability interpretation of the loss function. The details of this talk will  

also explain why the efficiency and adaptivity are so easy to achieve in 

this WGS for high-dimensional PDEs. 

 

 
 

 

 


