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The modified Camassa-Holm (mCH) equation

The mCH equation

mt + [(u2 − u2x)m]x = 0, m = u− uxx, x ∈ R, t > 0.

(Fokas, 1995; Olver & Rosenau, 1996; Qiao, 2006)

KdV

mCHCH

mKdV
Miura transformation

tri-Hamiltonian duality:

Miura-Liouville transformation

Kang et. al., 2016, J. Nonlinear Sci.(Proposition 3.2)

u = v2 ± p
avx

u = v2 ± vx

Figure 1: Relations with KdV, mKdV and CH equations
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Local solutions

For the mCH equation:

I local existence and uniqueness of strong solutions:
Fu, Gui, Liu, Qu, 2013, JDE (Besov space)
Gui, Liu, Olver, Qu, 2013, CMP (Hs(R), s > 1/2)
Himonas, Mantzavinos, 2014, J. Nonlinear Sci. (Hölder space)
...

I finite time blow-up behaviors:
Gui, Liu, Olver, Qu, 2013, CMP
Liu, Olver, Qu, 2014, Anal. Appl.
Chen, Liu, Qu, Zhang 2015, Adv. Math.
...

Question: How to extend weak solutions globally?
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Definition of weak solutions

mCH equation is equivalent to

(1− ∂xx)ut + [(u2 − u2x)(u− uxx)]x

= (1− ∂xx)ut + (u3 + uu2x)x −
1

3
(u3)xxx +

1

3
(u3x)xx = 0.

Multiply the equation by a test function φ ∈ C∞c (R× [0,∞)) and
integrate by parts:

L(u, φ) =

∫ ∞
0

∫
R
u(x, t)[φt(x, t)− φtxx(x, t)] dx dt

− 1

3

∫ ∞
0

∫
R
u3x(x, t)φxx(x, t) dx dt− 1

3

∫ ∞
0

∫
R
u3(x, t)φxxx(x, t) dx dt

+

∫ ∞
0

∫
R

(u3 + uu2x)φx(x, t) dx dt = −
∫
R
φ(x, 0)m0(x) dx.
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Properties of G and G′

Fundamental solution of Helmholtz operator 1− ∂xx: (m = u− uxx)

G(x) =
1

2
e−|x| ⇒ u = G ∗m.

1

2

1

2

�1

2

�

�

G(x) Gx(x)

Figure 2: G and G′.

I G−Gxx = δ; V (G) = 1, V (G′) = 2.

I ‖G‖L∞ = 1
2 , ‖G′‖L∞ = 1

2 ; ‖G‖L1 = 1, ‖G′‖L1 = 1;
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N -peakon weak solutions

N -peakon weak solutions:

uN (x, t) =

N∑
i=1

pi(t)G(x− xi(t)), mN =

N∑
i=1

pi(t)δ(x− xi(t)).

When x1(t) < x2(t) < · · · < xN (t), one has (Gui et.al. 2013):
d

dt
pi = 0,

d

dt
xi =

1

6
p2
i +

1

2

∑
j<i

pipje
xj−xi +

1

2

∑
j>i

pipje
xi−xj +

∑
1≤m<i<n≤N

pmpne
xm−xn .

N = 1: solitary wave solutions (one peakon):

u(x, t) = pG(x− x(t)), x′(t) =
p2

6
.
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Finite time collision

Consider initial date

m0 = p1δ(x− c1) + p2δ(x− c2), c1 < c2, p21 > p22.

The two peakons ODE:
d

dt
x1(t) =

1

6
p21 +

1

2
p1p2e

x1(t)−x2(t),

d

dt
x2(t) =

1

6
p22 +

1

2
p1p2e

x1(t)−x2(t).

=⇒
d

dt
(x1 − x2) =

1

6
(p21 − p22) > 0.

This two peakons will collide with each other at

t∗ :=
6(c2 − c1)
p21 − p22

.

Global trajectories 6=⇒ global peakon solutions
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Finite time collide between peakons

Question: How to extend trajectories globally and obtain global
N -peakon weak solutions?
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Problem: non-Lipschitz vector field

Characteristic equation for mCH:

d

dt
x(t) = u2(x(t), t)− u2x(x(t), t).

Consider uN (x, t) =
∑N

i=1 piG(x− xi(t)):

d

dt
xi(t) =

[
uN (xi(t), t)

]2 − [uNx (xi(t), t)
]2
, i = 1, · · · , N.

Jump discontinuous, non-Lipschitz vector field.

How about mollify the vector field one time?
(Vortex blob method for 2D Euler equation)
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Speed for one peakon u(x, t) = pG(x− x(t))

Fact: x′(t) = p2

6 .

From characteristics equation: x′(t) = (u2 − u2x)(x(t), t):

x′(t) = p2G2(x(t)− x(t))− p2G2
x(x(t)− x(t))

= p2G2(0)− p2G2
x(0) =

p2

6
.

⇒ the correct definition for G2
x(0):

G2
x(0) = G2(0)− 1

6
=

1

12
.
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One peakon: one time mollification

Let ρ(x) be an even function with
∫
ρdx = 1, ε > 0.

ρε(x) =
1

ε
ρ
(x
ε

)
, Gε(x) = (ρε ∗G)(x).

Then, one time mollification gives wrong travelling speed:

(ρε ∗Gx)2(0)→ 0, [ρε ∗ (G2
x)](0)→ 1

4
, ε→ 0.

Double mollification gives the right one (independent of ρ)

lim
ε→0

[ρε ∗ (Gεx)2](0) =
1

12
. (∗)
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Double mollification

For N -peakon:

uN,ε(x; {xk}) :=

N∑
i=1

piG
ε(x− xi), UNε (x; {xk}) :=

[
uN,ε

]2 − [uN,εx

]2
.

Double mollification (particle blob method):

d

dt
xεi(t) = (ρε ∗ UNε )(xεi(t); {xεk(t)}), i = 1, · · · , N.

⇒ Global approximated trajectories:

xεi (t) : t ∈ [0,∞), i = 1, 2, · · · , N.
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Collision avoidance

Initial data xεi(0) = ci:

mN
0 =

N∑
i=1

piδ(x− ci), c1 < c2 < · · · < cN ,
N∑
i=1

|pi| ≤M0.

Theorem (Theorem 3.2, Gao, Li & Liu 2018)

Let {xεi(t)}Ni=1 be trajectories obtained by approximated ODEs with
initial data xεi(0) = ci. Then, for any t > 0, we have

xε1(t) < xε2(t) < · · · < xεN (t), ∀t > 0.

Proof: only need the following estimate:

−Cε(xεk+1 − xεk) ≤
d

dt
(xεk+1 − xεk) ≤ Cε(xεk+1 − xεk).
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Weak consistence

Approximated N -peakon solutions:

uN,ε(x, t) =
N∑
i=1

piG
ε(x− xεi(t)).

“Distance” to weak solutions:

EN,ε = L(uN,ε, φ) +

∫
R
φ(x, 0)mN

0 (dx).

We have

Proposition (Proposition 3.1, Gao, Li & Liu 2018)

There exists a constant C independent of N, ε such that EN,ε satisfies

|EN,ε| ≤ Cε.
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Limiting trajectories

Trajectories xεi(t) are globally Lipschitz:∣∣∣∣ d

dt
xεi(t)

∣∣∣∣ ≤ 1

2
M2

0 .

⇒ {xεi(t)}ε>0 is uniformly bounded and equicontinuous in [0, T ].

Arzelà-Ascoli Theorem ⇒ {xi(t)}Ni=1 ⊂ C([0,+∞)) satisfying∣∣∣∣ d

dt
xi(t)

∣∣∣∣ ≤ 1

2
M2

0 , i = 1, · · · , N

xi(t) never cross with each other.
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Global N -peakon weak solutions

Approximated N -peakon weak solutions:

uN,ε(x, t) =
N∑
i=1

piG
ε(x− xεi(t))

converges a.e. (x, t) to

uN (x, t) =
N∑
i=1

piG(x− xi(t)).

Lebesgue dominated convergence theorem implies

uN,ε → uN , uN,εx → uNx , ε→ 0, L1
loc(R× [0,+∞))

+ weak consistency ⇒

uN (x, t) is an N -peakon weak solution to the mCH equation.
Yu Gao (PolyU) Double mollification February 27, 2021 17 / 22



Gloabl existence of weak solutions in M(R)

Theorem (Theorem 4.1, Gao, Li & Liu 2018)

For any initial Radon measure m0 ∈M(R), there is a global weak
solution u to the mCH equation, which satisfies that

u ∈ C([0,∞);H1(R)) ∩ L∞(0,∞;W 1,∞(R)) ∩W 1,∞(0,∞;L∞(R)),

and for any T > 0,

u, ux ∈ BV (R× [0, T )).

Moreover, we have

m = (1− ∂xx)u ∈M(R× [0, T ))

and there exists a subsequence of mN (also labeled as mN ) such that

mN ∗
⇀m in M(R× [0, T )) (as N →∞).
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Equations with multi-peakon solutions

fg-family of equations for multi-peakon solutions (Anco & Recio 2019):

mt + f(u, ux)m+ [g(u, ux)m]x = 0, x ∈ R, t > 0.

(i) f = ux, g = u: CH equation;

(ii) f = 0, g = (u2 − u2x)n (n ∈ N+): generalized modified
Camassa-Holm (gmCH) equation.

mt + [(u2 − u2x)nm]x = 0, m = u− uxx, x ∈ R, t > 0.

n = 1: modified Camassa-Holm equation.
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Double mollification for the gmCH

The gmCH equation (n ∈ Z+):

mt + [(u2 − u2x)nm]x = 0, m = u− uxx, x ∈ R, t > 0.

Double mollification:

uN,ε(x; {xk}Nk=1) :=
N∑
k=1

pkG
ε(x− xk),

UNε (x; {xk}Nk=1) :=
[
(uN,ε)2 − (∂xu

N,ε)2
]n

(x; {xk}Nk=1),

and
UN,ε(x; {xk}Nk=1) := (ρε ∗ UNε )(x; {xk}Nk=1).

The regularized ODEs:

d

dt
xεi(t) = UN,ε(xεi(t); {xεk(t)}Nk=1), i = 1, · · · , N,
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Traveling speed of single peakon solutions:

Consider the case for single peakon weak solutions. When N = 1,

d

dt
xε(t) = U1,ε(xε(t), t) = p2n

(
ρε ∗

[
(Gε)2 − (Gεx)2

]n)
(0).

We have the following theorem:

Theorem (Theorem 3.2, Y. Gao & H. Liu 2021)

The following identity holds

lim
ε→0

(
ρε ∗

[
(Gε)2 − (Gεx)2

]n)
(0) =

1

22n

n∑
k=0

(
n

k

)
(−1)k

2k + 1
.

For any amplitude p 6= 0 and n ∈ N, the single peakon weak solutions to
the gmCH equation is given by

u(x, t) = pG(x− cnt), cn =
(p

2

)2n n∑
k=0

(
n

k

)
(−1)k

2k + 1
.
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Thank you!
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