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This paper focuses on two points, relevance and abstraction, which 
require attention in teaching a course on abstract algebra. 

Introduction 
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Such a distorted view of abstract algebra will naturally breed in the student doubt about 
and aversion to the subject. In this paper I will not elaborate on the applicability and utility of 
the subject. Abstract algebra is useful, as workers in the field will testify. (For example, one 
account based on personal experience is given in [Siu, 2000].) However, such applications are 
mostly beyond what an undergraduate curriculum usually encompasses. More pertinently, 
immediate util ity is not the sole objective in justifying the teaching of a subject in the 
undergraduate curriculum. I would instead concentrate on the points about relevance and 
abstraction raised in the conversation at the beginning. There is no avoidance of these two 
points in a discussion on the teaching and learning of abstract algebra. I feel that difficulty in 
teaching is related to the lack of attention paid to these two points.  

Relevance 
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(1) Why is (–1) × (–1) = 1 ? 

(2) Can one trisect an angle? duplicate a cube? square a circle? 

(3) Which regular N-gon can be constructed? 

(4) What are all i ntegral solutions of *+,-
−= ./

 

(5) Can one solve 
�''+ 01

=+− .. by radicals? 

(6) Which is more symmetric: a square? an equilateral triangle? a rectangle? a circle? 

(7) “There are a certain number of objects. If you count them by threes, two are left. If you 
count them by fives, three are left. If you count them by sevens, two are left. How many 
objects are there?” (Sun Zi Suan Jing, c. 4th century) 

(8) Can 36 officers be drawn from 6 different ranks and from 6 different regiments so that 
they be arranged in a square array in which each row and each column consist of 6 
off icers of different ranks and different regiments? (L. Euler, 1779) 

(9) How many (structural) isomers of alkanes (CN H2N+2) are there? 

(10) Can one place N dots on an N × N grid with one dot in each row and each column so 
that any shifted copy has at most one dot in common in the overlapping part? (J.P. 
Costas, 1966; S.W. Golomb and H. Taylor, 1984) 

 

In class I will run through these ten questions with short comments, far from sufficient 
to explain the question in detail (not to say the answer), but adequate as a bridge with what has 
been learnt before or as a preview of what lies ahead. Take Question (1) as an example. I will 
relate the question to students’ learning experience in elementary arithmetic, how they learnt 
this fact and why they accepted it in school, whether they can convince someone baffled by it, 
or are they themselves baff led by it? (An interesting account of this learning experience is 
depicted in Vie de Henri Brulard (1836) by the French novelist Stendhal (M.-H. Beyle).) Then I 
wil l tell them about the “art of positive and negative numbers” explained in the ancient Chinese 
mathematical classics Jiu Zhang Suan Shu (Nine Chapters on the Mathematical Art, composed 
between 100 B.C. and A.D. 100), and the first explicit mentioning of the rule “minus times 
minus is equal to plus” in Suan Xue Qi Meng (A First Introduction to Arithmetic, 1299) by Zhu 
Shijie. I will continue to tell students it took the Western mathematical community a long time 
to come to terms with the operations on negative numbers. (I learn a lot on this topic from 
[Pycior, 1981].) As late as the beginning of the 19th century many English mathematicians still 
objected to the use of negative numbers. F. Maseres, one of the main proponents of this 
objection, wrote in Tracts on the Resolution of Affected Algebraick Equations (1800):  

 

“ the Science of Algebra, or Universal Arithmetick, has been disgraced and 
rendered obscure and difficult, and disgusting to men of a just taste for accurate 
reasoning.”  

 



W. Frend, another of the main proponents, lamented the lack of a logical foundation for 
negative numbers in The Principles of Algebra (1796): 

 

“when a person cannot explain the principles of a science without reference to 
metaphor, the probability is, that he has never thought accurately upon the 
subject.”  

 

Such doubt and uneasiness still exist among pupils when they first learn the rule “minus times 
minus is equal to plus” . In a letter to F. Maseres in 1801, R. Woodhouse, Lucasian Professor of 
Mathematics at Cambridge University, even said: 

 

“ till the doctrines of negative and imaginary quantities are better taught than 
they are at present taught in the University of Cambridge, … they had better 
not be taught.”  

 

Clearly we should not adopt this policy now. We do owe our undergraduates an explanation. 
This motivation will naturally blend in with the discussion on solving equations related to 
Questions (4) and Question (5). 

 

 The discussion on solving equations is particularly relevant, not just because of the 
well-known fact that the word “algebra” is the Latinized version of the Arabic word “al-jabr”  
which appeared in the title of the book Hisab al-jabr wàl-muqàbala on solving equations 
(written by Mohammed ibn Musa al-Khowarizmi in around 825), but because it leads to 
subsequent development which evolve into what we today call (abstract) algebra. Classical 
algebra is simply the art of solving (algebraic) equations. Indeed, up to the mid 19th century 
mathematicians still regarded algebra as such. For a period F. Viète used the term “analysis” to 
denote algebra, because he did not favour the word of Arabic origin on the ground that it has no 
meaning in the European language! However, later in the era of I. Newton and G.W. Leibniz, 
calculus was regarded as an extension of algebra with lots of functions expressed as power 
series which behave li ke polynomials of infinitely high degree. The word “analysis” gradually 
acquired its modern meaning in describing the subject, while its original use to denote algebra 
never caught on. Algebra remained to be called algebra. The techniques called by F. Viète 
“ logistica speciosa” that deals with operation on symbols representing species or forms of 
things, as contrasted to “ logistica numerosa” that deals with the arithmetic of numbers, are still 
being learnt in school algebra in order to prepare the way for solving equations. Unfortunately, 
a central message is normally lost in school algebra amidst the technicalities of simplification 
of algebraic expressions, factorization of polynomials, laws of indices, etc. This central 
message is:  

 

We treat numerical quantities as general objects and manipulate such general 
objects as if they are numerical quantities. Although we do not know what they 
are (prior to solving the equation) we know they stand for certain numbers, and 
as such they obey general rules (such as a + (–a) = 0, a × (b × c) = (a × b) × c, 
etc.) We can therefore apply these general rules systematically to solve 
problems which can be formulated in terms of equations. 

 

No wonder F. Viète was so optimistic as to close his book In Artem Analyticam Isogoge 
(Introduction to the Analytical Art, 1591) with the saying “Quod est, Nullum non problema 
solvere” (there is no problem that cannot be solved)! This central message continues to ring 



true in the subsequent development of algebra. In [MacLane 1981] S. MacLane describes 
abstract algebra as: 

 

“ the program of studying algebraic manipulations on arbitrary objects with the 
intent of obtaining theorems and results deep enough to give substantial 
information about the prior existing particular objects.”  

 

A study of this kind is facilitated by, if not necessitates, the use of the axiomatic method, but 
one must not equate abstract algebra with axiomatic approach. After all , the latter is only an 
organizing principle but not the substance of the former. We will treat this point in more detail 
when we discuss abstraction in the next section. 

 

Coming back to solving equations, I agree that the full story cannot be understood until 
we cover Galois theory, which is not usually covered, for lack of time and for the level of 
sophistication, in a first course in abstract algebra. But some indication of how this problem is 
related to the emergence of the concept of a group is worth the time spent even in a first course 
in abstract algebra. From the symmetry of an equation to the symmetry in geometry and beyond 
is a trip students can enjoy and benefit from the course. To illustrate I wil l now give an 
extremely sketchy explanation on solving the cubic equation ��
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only 
highlighting the crucial point on symmetry. (This explanation was given by A.-T. Vandermonde 
in a brilliant memoir of 1774 [Tignol, 1980].) Let γβα �� be the three roots of the cubic equation. 
Note that 
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where 
��� �� πω =  Similar expressions can be found for β  and γ . If we put γωωβα
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coefficients of the original equation (and constants) using only rational operations and radicals? 
If we can, then we can express all roots γβα �� in terms of the coefficients of the original 
equation (and constants) using only rational operations and radicals, i.e. the cubic equation is 

solvable by radicals. Note that [ ] [ ]������������ 	
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 �������� ������ −+=−  By a result on symmetric polynomials (which is familiar to 
school pupils in the special case of polynomials in two indeterminates), we will achieve that if 
we can show that 

�� �� + and 
���� are symmetric polynomials in γβα �� . How can we check 

this? Let us run through all six possible permutations of γβα ��  and see what γωωβα
�

++=�  

and ωγβωα ++=
�� become? For instance, if α becomes α, β  become γ  and γ  becomes β , 

then u becomes v and v becomes u so that  
��  becomes 

��  and 
��  becomes 

�� . Take one more 
case, if α becomes γ, β becomes α  and γ  becomes β, then u becomes ωu and v becomes ω2v so 
that u3 becomes u3 and 

�� becomes 
�� . A simple calculation will show that for all six 

permutations of γβα �� , 
�� �� +  remains 

�� �� +  and 
���� remains 

���� . Hence, 
�� �� +  and ���� are symmetric polynomials in γβα �� . More generally, the set of certain permutations on a 

finite number of symbols under the operation of composition is a typical example of a group. 
The notion of a group plays a prominent role in the discussion on the problem of solving 
equations in radicals.  



Abstraction 
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“ these principles belong to a more general and more abstract realm of ideas. It 
is therefore proper to free their development from all inessential restrictions, 
thus making it unnecessary to repeat the same argument when applying it in 
different cases … Also, when stated with all admissible generality, the 
presentation gains in simplicity and, since only the truly essential features are 
thrown into relief, in transparency.”  

 

That much is well said, but only for the teachers who are seasoned mathematicians themselves. 
For students, especially those who first embark on higher mathematics, that can only give them, 
if anything at all , a comforting psychological support for what is to come. In reality that is not 
enough to arm them to face the challenge. In its long process of evolution (which is 
unfortunately unfamiliar to most students) mathematics has acquired a language of its own, 
which can sound quite obscure to one not steeped in that training. Abstraction is a forte that 
lends mathematics its power, though it causes anxiety in many as well . However, we should see 
that as a challenge rather than as something to avoid, to uncover the concrete parts which 
evolve into the abstract concepts rather than to only study the concrete parts. 

 

 Having stated the generalities above I will now focus on three specific aspects 
pertaining to abstract algebra: (i) definitions, (ii) proofs, (iii) symbolic thinking? geometric 
thinking? or something else? 

 

 For mathematicians a definition possesses two levels in meaning. On the first level, a 
definition serves the mere purpose of an abbreviation. Instead of saying: 

 

If straight lines ��� � !! on the same plane are such that  !  sets up on L 

adjacent angles equal to one another and �!  sets up on L adjacent angles equal 

to one another, then  !  and �!  do not meet one another in either direction 
when they are produced indefinitely,  

 

we need only say: 

 

If � �!! are perpendicular to L, then � �!!  are parallel. 

  

On the second level, a definition embodies a concept. The job of a mathematician includes that 
of formulating useful definitions and delineating relationship between definitions. (When we 
retreat to more and more basic definitions we come face to face with the role of axioms.) Only 
because we understand a definition on the second level well enough do we feel easy about it on 
the first level, just like what Shakespeare says, “What’s in a name? That which we call a rose 
by any other name would smell as sweet.” (Romeo and Juliet, Act 2, Scene 1) For a teacher, 
clarity and preciseness are all that matter. But for a novice, if not sufficient attention is given to 
a definition, they will regard a definition as something coming out of the blue, something 
mysterious and incomprehensible, and hence something to be memorized in order to pass the 
examination. At this point, communication between the teacher and the students already breaks 



down. In a paper on mathematical definitions H. Poincaré says (L’Enseignement Mathématique, 
6 (1904), 255-283): 

 

“What is a good definition? For the philosopher or the scientist, it is a 
definition which applies to all the objects to be defined, and applies only to 
them, … in education it is not that; it is one that can be understood by the 
pupils, … How are we to find a statement that will at the same time satisfy the 
inexorable laws of logic and our desire to understand the new notion’s place in 
the general scheme of the science, our need of thinking in images? More often 
than not we shall not find it, and that is why the statement of a definition is not 
enough; it must be prepared and it must be justified.”  

  

 I will illustrate with the definition of a quotient structure, which is a notorious learning 
difficulty for an average undergraduate. At the same time it is a notion which appears in many 
contexts and warrants the time and effort for its explication. In elementary number theory it 
appears in the form of modulo arithmetic, which can be traced back to the work of C.F. Gauss 
in 1801. In the theory of system of linear equations (respectively nth order linear recurrence 
relation, respectively nth order linear differential equation), it appears in the form of the 
quotient space of a suitable vector space modulo the solution space of the associated 
homogeneous system. In the theory of groups it appears in the form of the quotient group 
modulo a normal subgroup. In topology it appears in the form of a quotient topological space 
modulo a subspace. Historically speaking, the notion made its first explicit début in the 
explanation by A.L. Cauchy on what the field of complex numbers is, viz the quotient ring of 
polynomials with real coefficients modulo the ideal generated by �

�
+

�
. Although the 

contexts are different and the purposes of making use of the quotient structure may vary, there 
is an underlying common principle, the partition of a set through the identification of certain 
elements of the set. A partition of a set amounts to the same thing as the introduction of an 
equivalence relation on the set. That explains both the motivation why we do that and the 
technique on how to do that. It also reveals the main learning obstacle in that we are looking at 
the process (equivalent relation) and the object (equivalence class) at the same time. Worse yet, 
we have to learn how to see a subset of elements (coset) as an element by itself without losing 
sight that it actually stands for a subset of elements. It is this kind of f lexibility of framework 
which is demanding on the mathematical maturity of the students. It takes time to let the idea 
sink in. Dishing out a correct and precise definition of, say a quotient group, is not enough, 
although it sounds perfectly clear to the teacher, who will wonder why students cannot take in 
such a clear-cut answer. 

 

 Let us continue to see the proof of one theorem making use of a quotient structure. As 
Y.I. Manin puts it, “a good proof is what makes us wiser” . Our aim is to explain and to 
persuade, not just to verify and to force the result upon the learner. The theorem we will look at 
is a most basic result in the theory of finite groups usually referred to as Lagrange’s Theorem 
(J.L. Lagrange 1770/1771): 

 

If H is a subgroup of a finite group G, then the order of H is a divisor of the 
order of G. 

How do we visualize the result? A traditional way to classify mathematical thinking is to say 
that some people are more inclined towards geometric thinking and some are more inclined 
towards symbolic thinking. Even in abstract algebra both types of thinking can be useful. 
However, in abstract algebra there may be a third type in which a schematic diagram aids the 
thinking. For instance, in this example one tries to figure out a way to count the elements of a 



group G. Part of G is the subgroup ����� �� ������ 	
== where s = |H|. If H is the whole of G, 

then we are done. If not, then there is some g in G outside of H. It is not hard to see that we 
create another (disjoint from H) subset ����� �� �
�
�
�

� 	

== . (It needs some checking 
for the qualification “another” .) If H and gH together cover the whole of G, then again we are 
done. If not, then there is still some g’  in G which is outside of H and gH. (Some doodling on 
the paper may help!) Consider ����� �� ��
�
�

�
 ′′′=′=′ 	

, which turns out to be yet 
another (disjoint from H and gH) subset. (It needs even more checking for the qualification “yet 
another” .) If H and gH and g’H together cover the whole of G, then we are done. If not, we 
repeat the process until we arrive at a partition of G into t pieces. Now that we realize the 
connection between a partition and an equivalence relation, we can streamline the proof of 
Lagrange’s Theorem by passing to the quotient set G/H of cosets of G by H. These t copies of 
H, each consisting of s = |H| elements, exhaust the whole of G with |G| elements, so t|H| = |G|, 
i.e. |H| is a divisor of |G|. A further natural question is to ask whether we can turn G/H into a 
group by inducing the group operation of G on G/H. It turns out this is not always possible, but 
will be possible if and only if H is what we term a normal subgroup of G. That will lead to 
further discussion on why we want to do so. My favourite examples to illustrate why we want 
to “kill” a subgroup are: (i) to look at the commutator subgroup [G, G] and the quotient group 
G/[G, G] to discuss “how abelian” G is? (ii) to look at the centre Z and the quotient group G/Z 
to discuss when G is abelian. In this way the lessons go on and the course unfolds. 
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