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“The history of science is science itself.”

Johann Wolfgang von Goethe, Theory of Colour (1808).

Introduction

Mathematics is a human endeavour which has spanned over four thousand

years; it is part of our cultural heritage; it is a very useful, beautiful and pros-

perous subject. In his Presidential Address delivered to the British Association

for the Advancement of Science in 1897 Andrew Russ Forsyth (1858 – 1942) said,

“Mathematics is one of the oldest of sciences; it is also one of the most active; for

its strength is the vigour of perpetual youth.” [1, Chapter VII] This quotation

hints at a peculiar feature of mathematics, which other sciences do not seem to

possess, or at least not to the same extent, viz. the past, the present and the fu-

ture of the subject are intimately inter-related, making mathematics a cumulative

science with its past forever assimilated in its present and future [2, 3]. No wonder

in another Presidential Address to the British Association for the Advancement

of Science in 1890, J.W.L. Glaisher (1848 – 1928) said that “no subject loses more

than mathematics by any attempt to dissociate it from its history” [1, Chapter

VI]. The great French mathematician Henri Poincaré (1854 – 1912) even said, “If

we wish to forsee the future of mathematics, our proper course is to study the

history and present condition of the science.”

For many years now various authors in different parts of the world have written

on the important role played by history of mathematics in mathematics education.

A good summary of some reasons for using history of mathematics in teaching
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mathematics and of some ways in carrying it out can be found in [4, pp.4-5].

Perhaps it can be added that not only does the appropriate use of history of

mathematics help in teaching the subject, but that in this age of “mathematics

for all”, history of mathematics is all the more important as an integral part of the

subject to afford perspective and to present a fuller picture of what mathematics

is to the public community.

Be that as it may, enough has been said on a propagandistic level. Some en-

thusiasts have already channelled their effort into actual implementation, resulting

in a corpus of interesting material published in recent years in the form of books

or collections of papers [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. With this in mind I wish

to share with readers some of my experience in integrating history of mathematics

into the day-to-day teaching in the (undergraduate) classroom. Do not be mis-

led by the title into thinking that this article is a guide to the use of history of

mathematics in the classroom! The letters A, B, C, D refer to four categories, or

levels, of the use of history of mathematics in the classroom: A for anecdotes, B

for broad outline, C for content, and D for development of mathematical ideas.

Except for the last category, which describes a course by itself, the first three

categories represent three aspects of the use of history of mathematics. Following

a good practice in teaching, I shall illustrate each category with examples taken

from actual classroom experience instead of just explaining what each category

means in words. Even though such examples are admittedly piecemeal, I hope

readers can still get an impression of how the four categories contribute to impart

a sense of history in the study of mathematics in a varied and multifarious way.

A for Anecdotes

Everybody agrees that anecdotes about mathematics and mathematicians can

contribute to the teaching of the subject in various ways. In the preface to his book

[15], Howard Eves sums it up beautifully, “These stories and anecdotes have proved

very useful in the classroom — as little interest-rousing atoms, to add spice and a

touch of entertainment, to introduce a human element, to inspire the student, to

instill respect and admiration for the great creators, to yank back flagging interest,
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to forge some links of cultural history, or to underline some concept or idea.” (For

more anecdotes readers can consult two more books of a similar title by the same

author [16, 17].)

When we make use of anecdotes we usually brush aside the problem of au-

thenticity. It may be strange to watch mathematicians, who at other times pride

themselves upon their insistence on preciseness, repeat without hesitation apoc-

ryphal anecdotes without bothering one bit about their authenticity. However, if

we realize that these are to be regarded as anecdotes rather than as history, and

if we pay more attention to their value as a catalyst, then it presents no more

problem than when we make use of a heuristic argument to explain a theorem.

Besides, though many anecdotes have been embroidered over the years, many of

them are based on some kind of real occurrence. Of course, an ideal situation is

an authentic as well as amusing or instructive anecdote. Failing that we still find

it helpful to have a good anecdote which carries a message.

There are plenty of examples of anecdotes which serve to achieve the aims

set out in Eves’ preface. I will give only two examples. The first example illus-

trates the function mentioned last in Eves’ list — to underline some concept or

idea. The second example, besides introducing a human element, illustrates that

mathematics is not an isolated intellectual activity.

The first example is an anecdote about the German mathematician Hermann

Amandus Schwarz (1843 – 1921), reported by Hans Freudenthal [18]. Schwarz, who

was noted for his preciseness, would start an oral examination at the University

of Berlin as follows.

Schwarz: Tell me the general equation of fifth degree.

Student: x5 + bx4 + cx3 + dx2 + ex + f = 0.

Schwarz: Wrong!

Student: ... where e is not the base of the natural logarithms.

Schwarz: Wrong!

Student: ... where e is not necessarily the base of the natural logarithms.

This anecdote, whether it is true, semi-true or even false, makes for a perfect

appetizer to the main course of the general equation of degree m. It drives the
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point home as to how special a general equation is! I have made use of this anecdote

several times in a (second) course on abstract algebra, and each time students love

it. After listening to it, they appreciate much better the definition of a general

equation of degree m to be given subsequently.

The second example is a real historical document, a letter dated March 6,

1832 from Carl Friedrich Gauss (1777 – 1855) to his friend Farkas Bolyai (1775 –

1856), seven weeks after receipt of the amazing work on non-euclidean geometry

by the latter’s son, János Bolyai (1802 – 1860). We can imagine the dismay (but

not without a trace of delight!) of the proud father when he read the letter which

said, “If I commenced by saying that I am unable to praise this work [by János],

you would certainly be surprised for a moment. But I cannot say otherwise. To

praise it, would be to praise myself. Indeed the whole contents of the work, the

path taken by your son, the results to which he is led, coincide almost entirely

with my meditations, which have occupied my mind partly for the last thirty or

thirty-five years. ... of which up till now I have put little on paper, my intention

was not to let it be published during my lifetime. ... On the other hand it was my

idea to write down all this later so that at least it should not perish with me. It is

therefore a pleasant surprise for me that I am spared this trouble, and I am very

glad that it is just the son of my old friend, who takes the precedence of me in such

a remarkable manner.” [19, p.100] From this passage we can unfold an interesting

discussion on the interaction between philosophy and mathematics, and realize

better how mathematics forms a “sub-culture” within a broader culture.

B for Broad Outline

It is helpful to give an overview of a topic or even of the whole course at

the beginning, or to give a review at the end. That can provide motivation and

perspective so that students know what they are heading for or what they have

covered, and how that relates to knowledge previously gained. In either case

we can look for ideas in the history of the subject (even though in some cases the

actual path taken in history was much too tortuous to be recounted to pedagogical

advantage).
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One good example which permeates different levels in the study of mathe-

matics is the concept of a function. (See [20] for a discussion of an attempt to

incorporate this mathematical-historical vein into the teaching of mathematics at

various levels, from secondary school to university.) Let me give a more “localized”

(to just one subject) example here, that of the differential geometry of surfaces.

With the invention of calculus came its application in the study of plane

curves and later space curves. One crucial description is captured in the notion

of curvature with its several different but equivalent definitions. If we view the

curvature κ as the rate of change of a turning tangent, then it is not surprising

that, as proved by Abraham Gotthelf Kästner (1719 – 1800) in 1761,
∮

C

κds = 2π

for a simple closed curve C on the plane. In the 18th century, knowledge about

space curves allowed mathematicians to study a surface S in space, notably its

curvature, through the investigation of intersecting curves on S by planes through

the normal at a point. Leonhard Euler (1707 – 1783) introduced the notion of

principal curvatures κ1, κ2, which are the maximum and minimum values of the

curvatures of sectional curves so obtained on a pair of mutually orthogonal planes.

The product κ = κ1κ2 turns out to be of significance and is known as the Gaussian

curvature, which can also be described through the “Gauss map”, which measures

how fast the surface bends away from the tangent plane by measuring the “dis-

persion of directions” of unit normal vectors at all points in a neighbourhood.

Calculation of these quantities involves the use of coordinates, i.e. the surface S is

regarded as something sitting in the 3-dimensional euclidean space. For this reason

we say that such quantities are extrinsically determined. Mathematicians would

like to talk about the intrinsic geometry of a surface, i.e. describe the surface as

someone living on the surface without having to leave the surface and look at it

from above or below! In a famous memoir of 1827 titled “Disquisitiones generales

circa superficies curvas” (General investigation of curved surfaces) Gauss initiated

this approach. (Remember that Gauss did a lot of survey work and mapmaking,

and in those days one surveyed the terrain on the ground, not from the air!) The

crucial notion is that of a geodesic, the line of shortest distance on the surface

between two given points. Two surfaces which are applicable the one to the other,
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by bending but without stretching so that the distance between two given points

remains the same, will have the same geometry. For instance, the geometry on

a cylindrical surface will be the same as that on a plane surface, but will be dif-

ferent from that on a spherical surface. However, both the plane surface and the

spherical surface enjoy a common property, viz. a small piece cut on each will

be applicable to any other part on that same surface; in other words, they are

both surfaces of constant curvature. Indeed, Gauss proved in his memoir that

the (Gaussian) curvature κ is an intrinsic property, a result so remarkable that he

named it “Theorema Egregium”. He further showed that for a triangle 4 on S

whose sides are geodesics,
∫∫

4

κdS = 2π − (sum of exterior angles) .

(More generally, for a simple closed curve C on a surface S, the analogue to

Kas̈tner’s result is ∮

C

κgds = 2π −
∫∫

R

κdS ,

where κg is the so-called geodesic curvature and R is the region on the surface

bounded by C. For a geodesic triangle 4, the first integral becomes the sum

of exterior angles.) This important result was later generalized by Pierre-Ossian

Bonnet (1819 – 1892) in 1848 and by other mathematicians still later into the deep

Gauss-Bonnet Theorem, which relates the topology of a surface to the integral

of its curvature. (For the continued development initiated by the famous 1854

Habilitationsvortrag of Georg Friedrich Bernhard Riemann (1826 – 1866), readers

can consult [21, Chapters 11-15].)

C for Content

In [22] David Rowe points out that a major challenge facing the history of

mathematics as a discipline will be to establish a constructive dialogue between the

“cultural historians” (those who approach mathematics as historians of science,

ideas, and institutions) and the “mathematical historians” (those who study the

history of mathematics primarily from the standpoint of modern mathematicians).
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In this connection one should also consult [23, 24, 25] to savour the different views

held by some mathematicians and some historians of mathematics. I learn and

benefit from both groups in my capacity as a teacher and student of mathematics,

for I agree with what Charles Henry Edwards, Jr. says in the preface to his book

[10], “Although the study of the history of mathematics has an intrinsic appeal of

its own, its chief raison d’être is surely the illumination of mathematics itself .... to

promote a more mature appreciation of [theories].” In this section I will give four

examples borrowed from pages in the history of mathematics with an eye to the

enhancement of understanding of the mathematics. This is a particularly pertinent

function of history of mathematics for a mathematics teacher’s day-to-day work.

(1) The first example has appeared in [26], which is in turn gleaned from [27,

Appendix I]. (It also appears as one example in [28].) In 1678 Gottfried Wilhelm

Leibniz (1646 – 1716) announced a “law of continuity” which said that if a vari-

able at all stages enjoyed a certain property, then its limit would enjoy the same

property. Up to the early 19th century mathematicians still held this tenet so that

Augustin-Louis Cauchy (1789 – 1857) might have been guided by it to arrive at

the following result in 1821: If {fn} is a sequence of continuous functions with

limit f , i.e. lim
n→∞

fn(x) = f(x), then f is a continuous function. Whenever I teach

a calculus class I present Cauchy’s “proof” to the class as follows. For sufficiently

large n, |fn(x) − f(x)| < ε. For sufficiently large n, |fn(x + h) − f(x + h)| < ε.

Choose a specific n so that both inequalities hold, then

|fn(x)− f(x)|+ |fn(x + h)− f(x + h)| < 2ε .

For this chosen fn, we have |fn(x + h)− fn(x)| < ε for sufficiently small |h|, since

fn is continuous at x. Hence, for sufficiently small |h|, we have

|f(x+h)−f(x)| ≤ |f(x+h)−fn(x+h)|+ |fn(x+h)−fn(x)|+ |fn(x)−f(x)| < 3ε .

With ε being arbitrary to begin with, this says that f is continuous at x. (A

picture will make the argument even more convincing!) While many students are

still nodding their heads, I tell them that Jean Baptiste Joseph Fourier (1768 –

1830) at about the same time showed that certain very discontinuous functions

could be represented as limits of trigonometric polynomials! (In hindsight we see
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that the work of Fourier provided counter-examples to the “theorem” of Cauchy.

But at the time it was not regarded in this light. Actually, when the Norwegian

mathematician Niels Henrik Abel (1802 – 1829) offered in his memoir of 1826 the

example

sin φ− sin 2φ/2 + sin 3φ/3− · · · ,

he remarked that “it seems to me that there are some exceptions to Cauchy’s

theorem” and asked instead what “the safe domain of Cauchy’s theorem” should

be [27, Appendix I]. Abel resolved the puzzle by restricting attention to the study

of power series, but in so doing, missed an opportunity to investigate the way an

infinite series (of functions) converge.) I ask the class to wrestle with the “proof”

of Cauchy and see what is amiss. If they cannot spot it, I tell them not to feel bad

since Cauchy could not spot it either, and it was left to Philipp Ludwig von Seidel

(1821 – 1896) to find out the mistake twenty six years later! Rectification of the

proof led later to the new notion of uniform convergence explicitly explained by

Karl Theodor Wilhelm Weierstrass (1815 – 1897). With this historical overture we

pass naturally on to a discussion of the mathematics of uniform convergence. (See

[5, Chapter 5; 12, Chapter III.4] for an enligtening discussion of the mathematics.)

(2) The second example has been used several times in an advanced elective course

on algebra. It started with an announced “proof” of Fermat’s Last Theorem by

Gabriel Lamé (1795 – 1870) in the meeting of the Paris Academy on March 1,

1847. The key step lies in the factorization

zp = xp + yp = (x + y)(x + yζ) · · · (x + yζp−1)

in the ring of cyclotomic integers Z[ζ] (modern terminology), where ζ is a primitive

pth root of unity. For an interesting account of the pursuit of this question in

subsequent meetings of the Paris Academy, readers can consult [29, Chapter 4].

The account includes the deposit of “secret packets” with the Academy by Cauchy

and Lamé — an institution of the Academy which allowed members to go on record

as having been in possession of certain ideas at a certain time without revealing

the content, in case a priority dispute developed later. The packets remained

secret and the matter was put to rest when Joseph Liouville (1809 – 1882) read

a letter from his friend Ernst Eduard Kummer (1810 – 1893) in the meeting of
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the Paris Academy on May 24, 1847. In the letter Kummer pointed out that the

“proof” broke down owing to failure of unique factorization in Z[ζ] in general.

He even included a copy of his memoir, published three years earlier, in which

he demonstrated that unique factorization failed for p = 23. He went on to say

that he could save unique factorization by introducing a new kind of complex

number he christened “ideal complex numbers”. With suitably chosen illustrative

examples to supplement the story, this is a natural point to launch into a detailed

discussion on the unique factorization of ideals in a Dedekind domain.

(3) The third example is also on algebra. It concerns the basic result known as

the Chinese Remainder Theorem. I will skip both the statement of the result in

the language of abstract algebra and the origin of the result found in Problem

26 of Chapter 3 of Sunzi Suanjing (Master Sun’s Mathematical Manual, c. 4th

century), which can be found in most textbooks, such as [30]. I will also skip

the application of this type of problem, viz. x ≡ ai mod mi, i ∈ {1, 2, . . . , N},
in ancient Chinese calendrical reckoning. I will only highlight what I would do

next after going through the two aforesaid issues with the class. I discuss with

them an algorithmic method devised by Qin Jiushao (1202 – 1261), known as the

“Dayan art of searching for unity” and explained in his book Shushu Jiuzhang

(Mathematical Treatise in Nine Sections) of 1247. It is instructive to see how to

find a set of “magic numbers” from which a general solution can be built by linear

combination. It suffices to solve separately single linear congruence equations of

the form kb ≡ 1 mod m, by putting m = mi and b = (m1 · · ·mN )/mi. The key

point in Qin’s method is to find a sequence of ordered pairs (ki, ri) such that

kib ≡ (−1)iri modm and the ri’s are strictly decreasing. At some point rs = 1

but rs−1 > 1. If s is even, then k = ks will be a solution. If s is odd, then

k = (rs−1 − 1)ks + ks−1 will be a solution. This sequence of ordered pairs can be

found by using “reciprocal subtraction” (known as the Euclidean algorithm in the

West), viz. ri−1 = riqi+1 + ri+1 with ri+1 < ri, and ki+1 = kiqi+1 + ki−1. If one

looks into the calculation actually performed at the time, one will find that the

method is even more streamlined and convenient. Consecutive pairs of numbers

are put at the four corners of a counting board, starting with

1 b
0 m

, ending in k 1
∗ ∗ .
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The intermediate processes are shown below:

ki ri

ki−1 ri−1
−→ ki ri

ki−1 ri+1
−→ ki ri

ki+1 ri+1
if i is even ,

or
ki−1 ri−1

ki ri
−→ ki−1 ri+1

ki ri
−→ ki+1 ri+1

ki ri
if i is odd .

The procedure is stopped when the upper right corner becomes a 1, hence the

name “searching for unity”. Students will be amazed by noting how the procedure

outlined in Shushu Jiuzhang can be phrased word for word as a computer program!

(4) The fourth example is about the Cayley-Hamilton theorem taught in a linear

algebra course, viz. χ(A) = 0 where χ(X) is the characteristic polynomial of the

n × n matrix A. First I show students a letter dated November 19, 1857 from

Arthur Cayley (1821 – 1895) to James Joseph Sylvester (1814 – 1897) [31, pp.213-

214]. The letter illustrated the theorem by exhibiting a concrete 2× 2 case. This

is particularly pertinent for an average student, who at this stage may even be

confused by the mere statement of the result, not to mention the explanation of

why it is true. Hence I emphasize the point in class by repeating the words made by

Cayley himself (in 1858), “The determinant, having for its matrix a given matrix

less the same matrix considered as a single quantity (italics mine) involving the

matrix unity, is equal to zero.” To drive the point home I continue to produce

a “joke-proof”: set X = A in the expression det(A −XI), hence det(A − AI) =

det 0 = 0, which means A satisfies the characteristic polynomial χ(X) = det(A−
XI). Students are requested to find out why this is not a valid proof. I will

give a valid proof in the next lecture, and for the more mathematically oriented

students I may further explain how to turn the “joke-proof” into a rigorous proof

by regarding both χ(X) and A−XI as polynomials over the ring of n×n matrices

(or more precisely, as polynomials over the commutative subring generated by A).

My experience tells me that students are stimulated into discussion by the letter

of Cayley, perhaps because they see from it that mathematicians do not work

alone but talk shop with each other and engage in social interaction. Students are

particularly “sympathetic” to the statement made by Cayley in his 1858 memoir

after demonstrating the theorem for a 2×2 matrix: “I have not thought it necessary

to undertake the labour of a formal proof of the theorem in the general case of a
10



matrix of any degree.” [32, p.624] As teachers we know how best to handle this

sentiment!

D for Development of Mathematical Ideas

“Development of Mathematical Ideas” is the title of a course I have been

teaching at my university since 1976. As an elective course for upper-level math-

ematics students (with an occasional few in other majors) with a moderate class

size of around twenty, the course does not have a fixed syllabus nor a fixed format

in teaching and assessment, thus allowing me to try out freely new approaches and

new teaching material from year to year. Some past experience has been reported

in [33, 34].

For the academic year 1995-96 I built the course around the anthology “Clas-

sics of Mathematics” edited by Ronald Calinger [35], which became more readily

available as a textbook through its re-publication in 1995. The idea is to let stu-

dents read some selected primary source material and to “learn from the masters”.

The year-long course was roughly divided into five sections: (1) Euclid’s Elements,

(2) Mathematical Thinking, (3) From Pythagoras, Eudoxus, ... (Incommensurable

Magnitudes) to Dedekind, Cantor, ... (Real Numbers), (4) Non-euclidean Geom-

etry, (5) Gödel’s Incompleteness Theorem. Passages in [35] were fitted into these

five sections. Besides the primary source material, some of the general historical

accounts (named “Introduction” of each chapter) make for useful assigned read-

ing, to be supplemented by a general text such as [32]. Lectures were devoted to

a more in-depth discussion, with more emphasis on the mathematics. I needed to

add some extra source material from time to time, especially material on ancient

Chinese mathematics. For instance, in the part on mathematical thinking I tried

to let students experience, through the writings of mathematicians such as Liu Hui

(c.250), Yang Hui (c.1250), Leonhard Euler (1707 – 1783), Julius Wilhelm Richard

Dedekind (1831 – 1916), Henri Poincaré (1854 – 1912), and George Pólya (1887

– 1985), how working mathematicians go about their jobs. Students would learn

that the logical and axiomatic approach exemplified in Euclid’s Elements is not

the only way. The textbook by Calinger [35], with its extensive bibliography, also
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provides useful support for the project work (in groups of two), which consists of

an oral presentation and a written report on a topic of the students’ choice. The

course itself is in fact the presentation of my project work!

Conclusion

Using history of mathematics in the classroom does not necessarily make

students obtain higher scores in the subject overnight, but it can make learning

mathematics a meaningful and lively experience, so that (hopefully) learning will

come easier and will go deeper. The awareness of this evolutionary aspect of

mathematics can make a teacher more patient, less dogmatic, more humane, less

pedantic. It will urge a teacher to become more reflective, more eager to learn

and to teach with an intellectual commitment. I can attest to the benefits brought

by the use of history of mathematics through my personal experience. The study

of history of mathematics, though it does not make me a better mathematician,

does make me a happier man who is ready to appreciate the multi-dimensional

splendour of the discipline and its relationship to other cultural endeavours. It

does enhance the joy derived from my job as a mathematics teacher when I try to

share this kind of feeling with my class. I attempt to sow the seeds of appreciation

of mathematics as a cultural endeavour in them. It is difficult to tell when these

seeds will blossom forth, or whether they ever will. But the seeds are there, and

I am content. I like the view proclaimed by the noted historian of science George

Sarton (1884 – 1956), who said, “The study of the history of mathematics will not

make better mathematicians but gentler ones; it will enrich their minds, mellow

their hearts, and bring out their finer qualities.” [36, p.28]
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