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This paper is to be read as a (very) preliminary version of the text of a talk to be

given by the second author at this AMC2005. Lacking the much needed reflection which

usually arises after the talk and the much desired stimulation which will be brought about

by the audience during the talk, we intend to write up a fuller version on a later occasion.

In a broad sense this piece of joint work is a footnote to the proposals from three

eminent mathematics educators: the process of mathematising of Hans Freudenthal [1,2],

the art of teaching and problem solving of George Pólya [4, Chapte 14], the theory of

substantial learning environment of Erich Wittmann [8,9].

Let us first give a classic example to illustrate what the title refers to. This example

is well-known, namely, the proof of the Pythagorean Proposition (in Chinese textbooks

known as the Gou-gu Theorem) in Euclid’s Elements (Proposition 47 of Book I). However,

we like to look at it from a pedagogical rather than from a historical or mathematical

viewpoint [7, Section 3.3]. Let ∆ABC be a right triangle and let squares ABHI, BCEF

and ACJK be erected on each side and outside of the triangle. The proposition says that

ABHI and ACJK add up to BCEF (in area). In the proof in Book I of Elements a

perpendicular line is dropped from A to BC, cutting BC at D and FE at G. AF and

CH are constructed (see Figure 1). The crux of the proof is to show that

ABHI = BDGF ,

by showing that ABHI = 2 × ∆HBC and BDGF = 2 × ∆ABF and that ∆HBC =

∆ABF (because the two triangles are actually congruent). A similar argument shows

that

ACJK = CDGE .
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Hence ABHI + ACJK = BDGF + CDGE = BCEF .

Figure 1

So far, so good, until when a curious pupil asks, “How come you drop that perpendicular

line AD and construct the lines AF , CH?”

A more general result — logically speaking, the same result — appears as Proposition

31 in Book VI of Elements: A polygon on the hypotenuse BC of a right triangle ∆ABC

is equal to the sum of similar and similarly situated polygons on the other two sides. The

proof looks quite different (at first sight). Drop a perpendicular line (again?) from A to

BC, cutting BC at D (Figure 2). The crux is to show that

CB : BA = AB : BD and CB : CA = CA : CD

by showing that ∆CBA ∼ ∆ABD and ∆CBA ∼ ∆CAD. From this we obtain

CB2 : AB2 = CB : BD and CB2 : CA2 = CB : CD .

Because BD + CD = CB, we conclude that AB2 + CA2 = CB2, which is to be proved.

Figure 2

Note two points:

(1) (à la Pólya) The result boils down to one special case of polygons of the simplest type

on the sides, namely triangles. Do we have such a triplet of similar triangles two of which

add up to the third? If we allow the triangles be erected either outside or inside of ∆ABC,

then there is a very natural answer: ∆ABD, ∆CAD and ∆CBA! Now, do you see the

role played by the perpendicular line from A to BC?

(2) Write CB : BA = AB : BD as CB · BD = BA2 and CB : CA = CA : CD as

CB · CD = CA2. Geometrically it means that the rectangle formed by CB and BD is

equal in area to the square on BA, and the rectangle formed by CB and CD is equal in
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area to the square on CA. Now, do you see how the proof of Proposition 47 in Book I

arises?

The proof of Proposition 31 in Book VI is more elegant and revealing, pointing the

finger at the main feature of ratio and proportion. Why would Euclid prove the same

result in a more artificial manner in Book I? Apparently, Euclid saw the significance of

the Pythagorean Proposition and its applications, so he wanted to have it explained as

early as possible in the book. A proof like that of Proposition 31 in Book VI cannot be

offered unless the theory of proportion is clearly explained as a prerequisite. That is done

in Book V, but that is not going to be easy for a beginner. The proof of Proposition 47

in Book I employs instead the notion of congruence, which is easier to understand. This

is a careful and clever design in a fine pedagogical tradition.

Wittmann proposed a systemic-evolutionary approach to mathematics education,

which rests upon the engagement of both the teacher and the pupils in a substantial

learning enviroment characterized by the following properties [9]:

“1. It represents central objectives, contents and principles of teaching mathematics at a

certain level.

2. It is related to significant mathematical contents, processes and procedures beyond

this level, and is a rich source of mathematical activities.

3. It is flexible and can be adapted to the special conditions of a classroom.

4. It integrates mathematical, psychological and pedagogical aspects of teaching math-

ematics, and so it forms a rich field for empirical research.”

To be able to surf freely in such a substantial learning environment , a teacher needs

to possess a certain frame of mind, a certain attitude and a certain store of knowledge.

In [6] this kind of teacher is referred to as “scholar-teacher”. Will a mathematics major

that graduates with academic distinction necessarily be such a teacher? Maybe, but not

always. This point has already been discussed by Shulman [5] by introducing the notions

of subject matter knowledge and pedagogical content knowledge. We like to go one step

further in stressing the importance of research in mathematics on the part of the teacher.

We must point out that, though similar in spirit as that of researcher in mathematics, this

kind of research can be quite different in form and content. This is because a school teacher

has to explain mathematics in a language and at a level of sophistication suitable to the

mental development of school pupils. Mathematics learn in the university provides the

background and the general upbringing in the discipline, but it needs reseach experience

of the kind we like to stress to enable a teacher to design the teaching sequence in the

classroom to enhance learning and understanding.

A large part of the talk is to give many examples to illustrate what we are after. Let

us give two of them here, if only to whet the appetite of the audience.

(1) How would you explain that the l.c.m. [n, n + 1] of the positive integers n and n + 1 is

their product n(n + 1)? For any mathematics major this is not going to be a problem. It
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is known that n and n + 1 are relatively prime, i.e. (n, n + 1) = 1. It is also known that

ab = (a, b)[a, b]. As a corollary, [n, n + 1] = n(n + 1). But do we need to go through all

this ‘advanced’ knowledge to see it? What happens if you want a junior primary school

pupil to discover this result?

Consider the following visualization. To be specific, let us take n = 4 and n + 1 = 5.

Take a collection of many rows of five objects. Together the total number of objects in

a specified number of rows is a multiple of 5. What is the least number of objects in a

number of rows that is a also multiple of 4? (See Figure 3)

Figure 3

Count off four items from each row, each time with one item left over. Obviously, after

repeating four time and four times only the left-over items accumulate to form four items.

Hence the l.c.m. of 4 and 5 is 4 × 5 = 20. There can be many follow-up questions such

as: What will be [n, n + 2]? Is it possible to explain ab = (a, b)[a, b] this way? How is

this related to the Euclidean algorithm? These are questions which are as much for the

teacher as are for the pupil, and they serve to explain why such a tiny bit of particular

information plays its role in classroom learning. On the contrary, put into an advanced

context, this tiny bit of particular information loses its significance altogether! If we know

ab = (a, b)[a, b], what is so special about a = n and b = n + 1?

(2) The first author has successful experience in making use of Egyptian unit fractions in

the primary school classroom [3]. For the preparation a teacher would need to go through

some research on questions about unit fractions before letting pupils explore the topic on

their own in order to be able to forsee possible obstacles and difficulties and to think of

ways to overcome them. These questions ranges from characterizing all proper fractions

which cannot be a sum of two distinct unit fractions to finding an algorithm to represent

any proper fraction as a sum of distinct unit fractions. Indeed, there are questions on

Egyptian unit fractions which are still open. Without doing the research, the teacher will

lack the confidence to run such a workshop.

With more examples to be given in the talk we hope to be able to convey our main

message, that teachers need research experience in mathematics but not exactly the kind

which is traditionally counted as research in mathematics. Each of these two kinds (or are

they really that different?) of research is important in its own right. However, if we agree

that teachers need it, then the next challenging question to address is what can be done

to nurture this attitude and ability in teacher education.

4



References

[1] H. Freudenthal, Mathematics As an Educational Task , Reidel Publishing Company,

Dordrecht, 1973.

[2] H. Freudenthal, Revisiting Mathematics Education, Kluwer Academic Publishers,

Dordrecht, 1991.

[3] C.I. Fung, How history fuels teaching for mathematising: Some personal reflections,

Mediterranean Journal for Research in Mathematics Education, 30 (1-2) (2004), 123-

144.
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