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1 Introduction

Let Ω be a bounded symmetric domain of rank ≥ 2 and Γ ⊂ Aut (Ω) be a
torsion-free irreducible lattice, , X := Ω/Γ. In [8], [10] and [20] Hermitian
metric rigidity for the canonical Kähler-Einstein metric was established. In
the locally irreducible case, it says that the latter is up to a normalizing
constant the unique Hermitian metric on X of nonpositive curvature in the
sense of Griffiths. This led to the rigidity result for nonconstant holomorphic
mappings of X into Hermitian manifolds of nonpositive curvature in the
sense of Griffiths, to the effect that up to a normalizing constant any such
holomorphic mapping must be an isometric immersion totally geodesic with
respect to the Hermitian connection.

With an aim to studying holomorphic mappings of X into complex man-
ifolds which are of nonpositive curvature in a more generalized sense, for
instance, quotients of arbitrary bounded domains of Stein manifolds by
torsion-free discrete groups of automorphisms, a form of metric rigidity was
established in [12] applicable to complex Finsler metrics, including espe-
cially induced Carathéodory metrics (defined using bounded holomorphic
functions). By studying extremal bounded holomorphic functions in rela-
tion to certain complex Finsler metrics, rigidity theorems were established
in [12] for nonconstant holomorphic mappings f : X → N into complex
manifolds N whose universal covers admit sufficiently many ‘independent’
bounded holomorphic functions. A new feature of the findings is that the
liftings F : Ω → Ñ to universal covers were shown to be holomorphic embed-
dings . The latter result will be referred to as the Embedding Theorem. In
the survey article [13] of the first author, a strengthening of the Embedding
Theorem was announced, as follows.

Theorem 1.1. (The Extension Theorem) Let Ω ⊂ Cn be a bounded sym-
metric domain of rank ≥ 2 in its Harish-Chandra realization, which is de-
composed into irreducible factors Ω = Ω1 × · · · × Ωm. Let Γ ⊂ Aut(Ω) be a
torsion-free irreducible lattice and M := Ω/Γ is the finite volume quotient
(with respect to the canonical metric). Let N be a complex manifold and
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τ : Ñ → N is its universal cover. Suppose f : M → N is a holomorphic
map. Write F : Ω → Ñ as the lifting of f . Assume (M,N ; f) satisfies the
following non-degeneracy condition:

(†): for each k (1 ≤ k ≤ m), there exists a bounded holomorphic function

hk on Ñ and an irreducible factor subdomain Ω′
k ⊂ Ω such that hk

is non constant on F (Ω′
k).

Then, there exists a bounded holomorphic map R : Ñ → Cn such that R◦F =
idΩ.

We will call Theorem 1.1 the solution to the Extension Problem to signify
that it gives an extension of the inverse map of the holomorphic embedding
F : X → Ñ . We note moreover that the proof of Theorem 1.1 is independent
of the fact that F is an embedding, and it gives an alternative proof of the
Embedding Theorem of [12]. In fact, the existence of R : Ñ → Cn such that
R ◦ F = idΩ implies a fortiori that F is injective and immersive, yielding

Corollary 1.2. (The Embedding Theorem) F is a holomorphic embedding.

A complete proof of Theorem 1.1 for the case of polydisks is given in [13],
and a sketch of the proof for the general case is also given there. The key
ingredients in [13] are Moore’s Ergodicity Theorem and Korányi’s notion and
existence theorem on admissible limits for bounded holomorphic functions
on bounded symmetric domains.

In this article, we give a streamlined complete proof of Theorem 1.1.
In our proof, Moore’s Ergodicity Theorem still plays an essential role but
Korányi’s notion of admissible limits is replaced by the Cayley projection.
For the proof of Theorem 1.1, it is equivalent to show that the identity map
idΩ is in the pull-back algebra F ∗Hol (Ñ ,Ω) of holomorphic maps which is
almost the vector-valued version of the algebra F := F ∗Hol (Ñ ,∆). This
motivates us to consider bounded holomorphic functions s = F ∗h ∈ F ,
which can be taken to be nonconstant by the nondegeneracy assumption
(†). We need to consider certain limits sΦ of s with respect to a Cayley
projection ρΦ : Ω → Φ, where Φ is a rank r− 1 boundary component of ∂Ω
in a Harish-Chandra realization. One is then able to show that ρ∗ΦsΦ ∈ F .
By the S1-averaging argument of H. Cartan, we would be able to produce
from ρ∗ΦsΦ a linear map µ : Ñ → Cn. By another K-averaging argument,
the identity map is found to in be the pull-back F ∗µ. Thus R = µ will be
the desired solution to our Extension Problem.

The Cayley projection ρΦ is intimately related to nonstandard (i.e., not
totally geodesic) holomorphic isometric embeddings Bm ↪→ Ω constructed in
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[15] by means of minimal rational curves. With the Cayley projection ρΦ, a
holomorphic function sΦ : Φ → ∆ is naturally defined whose existence is a
simple consequence of the classical Fatou ’s Theorem. It coincides with the
restricted admissible limiting function in the sense of Korányi.

In all the averaging arguments, various group actions are applied to
bounded holomorphic functions. Such group actions may produce functions
which are not a priori inside the original algebras under considerations. To
resolve this problem, we need to make use of some ergodicity and density
theorems which are consequences of Moore’s Ergodicity Theorem. With
these theorems, for any sequence in the arguments which produces new
functions, we may approximate the sequence so that the limit is shown to
lie on the desired algebras.

The organization of the article goes as follows. In Chapter 2, the bound-
ary component theory for bounded symmetric domains of Wolf is briefly
recalled. It serves to fix notations and recall several basic facts to be used
in later chapters. In Chapter 3, the concept and construction of Cayley pro-
jections are introduced. In Chapter 4, a well-known S1-averaging argument
of H. Cartan is recalled. We will also discuss a K-averaging argument. In
Chapter 5, the proof of Theorem 1.1 (the Extension Theorem) is given. In
Chapter 6, the last chapter, we give applications of the the Extension The-
orem to rigidity problems on irreducible finite-volume quotients of bounded
symmetric domains of rank ≥ 2.

The current article grew out on the one hand from a self-contained so-
lution of the Extension Problem made possible by the use of nonstandard
holomorphic isometric embeddings of the complex unit ball via the use of
minimal rational curves given by [15], and on the other hand on applica-
tions of the Extension Theorem to rigidity problems on X = Ω/Γ. The
solution of the Extension Problem constitutes a portion of the Ph.D. thesis
of the second author written under the supervision of the first author, while
applications of that solution culminating in the Isomorphism Theorem for
holomorphic mappings from X into arbitrary quotients of bounded domains
of finite intrinsic measure with respect to the Kobayashi-Royden volume
form (cf. Theorem 6.2) is an expanded and revised version of unpublished
results of the first author.
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2 Boundary Structure of Boundary Symmetric Do-
mains

We first give some preparation and set the notations. In this part, the main
reference is [21].

Let Ω ∼= G0/K = X0 be an irreducible bounded symmetric domain with
base point x0. Let g0 := Lie(G0), k = Lie(K), so that we have the Cartan
decomposition g0 = k⊕m0. Denote g = gC0 and m = mC

0 . Then g = kC ⊕m
and gc = k⊕ im0 is a compact real form of g. Let t be a Cartan subalgebra
of k. Then it is also a Cartan subalgebra in g0 and gc. The complexification
tC is a Cartan subalgebra of g. For z ∈ k a central element that induce the
complex structure J = ad(z)|m on X0 as well as on its compact dual X, we
have the corresponding decomposition m = m+ ⊕ m− into (±i)-eigenspaces
of J . Write p = kC ⊕ m−, which is a parabolic subalgebra of g consists of
nonnegative eigenspaces of ad(iz).

Let all the corresponding real analytic subgroups be denoted by capital
letters. We have X0 = G0/K, X = G/P and G0 ∩ P = K. Write xc :=
e · P ∈ G/P , then by the Borel Embedding Theorem,

X0 → X

gK 7→ g · xc

embeds X0 holomorphically into X as an open orbit G0(xc). The topologi-
cally boundary of X0 in X will be denoted by ∂X0. On the other hand, the
map

M+ ×KC ×M− → G

(m+, k,m−) 7→ m+km−

is a complex analytic diffeomorphism onto a dense open subset of G that
contains G0. This induces the map

ξ : m+ → X = G/P

m 7→ exp(m)P

which gives rise to the Harish Chandra embedding Ω = ξ−1X0 ⊂ m+. We
will study the topological boundary ∂Ω of Ω in m+ ∼= Cn.

Let Ψ be a set of maximal strongly orthogonal noncompact positive roots
of g. For each γ ⊂ Ψ, one can define the partial Cayley transform cγ ∈ Gc. If
Γ ⊂ Ψ, then cΓ :=

∏
γ∈Γ

cγ . Moreover, to each Γ ⊂ Ψ, there is a Lie subalgebra
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gΓ ⊂ g with real forms gΓ, 0 = g0 ∩ gΓ and gΓ, c = gc ∩ gΓ which give rise
to totally geodesic Hermitian symmetric subspaces XΓ = GΓ(x0) ⊂ X and
XΓ, 0 = GΓ, 0(x0) ⊂ X0 respectively.

The topological boundary ∂X0 of X0 in X decomposes into G0 orbits of
the form

G0(cΨ−Γx0) =
∪
k∈K

kcΨ−ΓXΓ, 0,

where Γ ( Ψ and kcΨ−ΓXΓ, 0 is a boundary component of X0. Each of the
sets kcΨ−ΓXΓ, 0 is also a Hermitian symmetric space of noncompact type
with rank |Γ|. Here G0(cΨ−Γx0) = G0(cΨ−Σx0) if and only if |Γ| = |Σ|.
Thus ∂X0 = E0∪E1∪· · ·∪Er−1 as disjoint union of G0 orbits Ei, each is in
turn a union of boundary components of rank i. The boundary components
of Ω in m+ is given by ξ−1kcΨ−ΓXΓ, 0 = ad(k) · ξ−1cΨ−ΓXΓ, 0. This also
shows that the boundary components of Ω in m+ are bounded symmetric
domains of rank |Γ| and ∂Ω admits a similar decomposition into G0 orbits.
Without loss of generality, we will write ∂Ω = E0∪E1∪· · ·∪Er−1. Boundary
components in the orbit Ei would be said of rank i. Note that the regular
part Reg(∂Ω) of the boundary ∂Ω is exactly Er−1. The Silov boundary
Sil(Ω) = E0 = G0(cΨx0), which is the unique closed boundary orbit. The
boundary components in Sil(Ω) are just points. For each 0 ≤ i ≤ r − 2,
the orbit Ei is contained in Ei+1, which is the topological closure of Ei+1

in the compact dual X of X0
∼= Ω. For example, if Φ is a rank 1 boundary

component, then ∂Φ consists of points in E0, thus ∂Φ = Sil(Φ).
For Γ ( Ψ, let

NΨ−Γ, 0 = {g ∈ G0 : gcΨ−ΓXΓ, 0 = cΨ−ΓXΓ, 0} ⊂ G0.

Then NΨ−Γ, 0 is the normalizer of the boundary component cΨ−ΓXΓ, 0 of X0

in X. Here NΨ−Γ, 0 is conjugate to NΨ−Σ in G0 if and only if |Γ| = |Σ|.
Moreover, since G is simple, NΨ−Γ, 0 are maximal parabolic subgroups of
G0 and any maximal parabolic subgroups of G0 is conjugate to NΨ−Γ, 0 for
some Γ. This shows that NΨ−Γ, 0 depends on the cardinality |Γ| of Γ but
not the entire structure of Γ.

The space G0/NΨ−Γ, 0 is a real flag manifold. Consider the fibration

π :G0(cΨ−Γx0) →G0/NΨ−Γ, 0

gcΨ−Γx0 7→ gNΨ−Γ, 0.

For any point gNΨ−Γ, 0 ∈ G/NΨ−Γ, 0, note that π−1(gNΨ−Γ, 0)∩K(cΨ−Γx0)
has exactly one point. We can identify the base of the fibration G/NΨ−Γ, 0
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to K(cΨ−Γx0) via kNΨ−Γ, 0 → k(cΨ−Γx0). Thus π becomes a K-equivariant
mapG0(cΨ−Γx0) → K(cΨ−Γx0) so that the fibre π

−1(kcΨ−Γx0) = kcΨ−ΓXΓ, 0,
which is the boundary component that pass through the boundary point
kcΨ−Γx0. Thus G0/NΨ−Γ, 0 = K(cΨ−Γx0) is the moduli space of all rank |Γ|
boundary components of X0 in X.

3 Cayley Projections and Admissible Limits

The main purpose of this section is to prove the following:

Theorem 3.1. Let Ω ⊂ Cn be an irreducible bounded symmetric domain of
rank r ≥ 2 and ∂Ω be the topological boundary in its compact dual. Suppose
h is a bounded holomorphic function defined on Ω. Then for almost all rank
r − 1 boundary components Φ ⊂ ∂Ω, h admits the Cayley limit hΦ defined
on Φ with respect to any family of Cayley projections {ρΦ}. The limiting
function hΦ is also bounded holomorphic.

Remark 3.2. For the case r = 1, Ω is either a unit disk in the complex
plane or a complex unit ball in higher dimension. Each rank 0 boundary
component Φ is just a point. The one dimensional case is covered by the
classical Fatou’s theorem and the higher dimensional case is covered by [4].
We also remark that the final conclusion about the holomorphicity does not
make sense since the boundary has odd real dimension.

3.1 The Construction of Cayley Projections

We first describe how a Cayley projection is constructed. We need to make
use of a holomorphic isometric embedding Bl → Ω, whose construction can
be found in [15].

Let Ω be an irreducible bounded symmetric domain of rank r ≥ 2. For
each b ∈ X in the compact dual of X0

∼= Ω, let

Vb :=
∪

{ℓ : ℓ is a minimal rational curve on X through b}
Vb := Vb ∩ Ω.

By the Polydisk theorem, there exists a maximal polydisk P ∼= ∆r embedded
totally geodesically as complex submanifold into Ω, so that

Ω =
∪
k∈K

kP.
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Each of the factor disk in P ∼= ∆r would be called a minimal disk. It
is known that a minimal disk D = ℓ ∩ Ω where ℓ is a minimal rational
curve on the compact dual X. There is an injective group homomorphism
Aut (P ) ↪→ Aut 0(Ω), implying that there are extensions for elements in
Aut (P ) to Aut (Ω). Suppose D ∼= ∆ × {0} is a minimal disk in Ω and the
one parameter group of transvections ψt ∈ Aut (∆) is defined by

ψt(z) =
z + t

1 + tz
.

Then
{(ψt(z), 0) : −1 < t < 1} ⊂ Aut (D)

extends to a one-parameter group of transvections Ψt ∈ Aut (Ω) via Aut (D) ↪→
Aut (Ω).

Definition 3.3. For each z ∈ Ω, a Cayley projection ρ is defined by

ρ(z) := lim
t→1

Ψt(z).

The name reflects its connection to the partial Cayley transform defined
in [21], cf. also [3] and [?]. One observe that ρ is equivalently defined by
any discrete subsequence {Ψtk} ⊂ {Ψt} (where tk → 1). Note also that
ρ(Ω) := Φ is exactly a rank r − 1 boundary component.

As in [15], for every b ∈ Φ, there is a holomorphic isometry

ρ−1(b) = Vb ∼= Bm

for some positive integer m. Thus ρ : Ω → Φ is a fibration with each fibre
holomorphically isometric to Bm. Since one may choose different embeddings
Aut (D) ↪→ Aut (Ω), there may exist more than one Cayley projections to
each boundary component Φ.

For our later discussion, we would usually need to choose a family of
Cayley projections in the following sense. For each boundary component
Φ ⊂ Reg(∂Ω), we just pick a Cayley projection ρΦ. Thus a family of Cayley
projections {ρΦ} can be identified as a subset of the moduli space of rank
r−1 boundary components G0/N . We may then discuss the concept ‘almost
all Cayley projections in the family’ by using the measure on G0/N .

Remark 3.4. Although it is not needed in proving the main theorem of the
article, we can define the following more general Cayley projections,
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Instead of picking one factor disk in the definition of Cayley projections,
we may pick any sub-polydisk. For the unit disk ∆, the one-parameter group
of transvections ψt ∈ Aut (∆) in (3.1) gives rise to the one-parameter group

(ψt, ψt, . . . , ψt) ∈ Aut (∆)s ↪→ Aut (∆)r, 1 ≤ s ≤ r, −1 < t < 1,

where r is the rank of the irreducible bounded symmetric domain Ω. Via
an embedding Aut (∆)r ↪→ Aut (Ω), we get from (ψt, ψt, . . . , ψt) a one-
parameter group of transvections Ψt ∈ Aut (Ω). Note that for any z ∈ Ω, as
t→ 1, Ψt(z) converges to a boundary component Φ ⊂ ∂Ω.

A Cayley projection comes from a particular one-parameter group of the
form Ψt defined as above, in which we choose to embed only one factor disk
(ie., s = 1). Similar to the situation of the Cayley projection, the projection
defined by

ρ(z) := lim
t→1

Ψt(z)

is equivalently defined by any discrete sequence {Ψtk} ⊂ {Ψt}, where −1 <
tk < 1 is such that tk → 1. The image of ρ is now a boundary component of
rank r − s. We say that ρΦ is a Cayley projection of rank s. The fibre for
Cayley projections of rank s for s ≥ 2 is not necessarily a ball.

3.2 Limiting functions defined by Cayley projections

Definition 3.5. Let h be a function defined on Ω and ρΦ : Ω → Φ is a
Cayley projection defined by {Ψtk} ⊂ Aut (Ω). For each z ∈ Ω, we say that
the limit hΦ(z) := limk→∞Ψ∗

tk
h(z) (if exist) is the Cayley limit of h at z

with respect to ρΦ.

We remark here that our definition of Cayley limits happens to coincide
with Korányi’s notion of restricted admissible limits stated in [5]. Using one-
parameter group of transvections, one can define the restricted admissible
domains and hence the restricted admissible limits. Then observe that the
sequence of points along a Cayley projection must lie inside some restricted
admissible domains in the sense of Korányi defined in [5]. Conversely, the
tail part of a sequence of points in a restricted admissible domain must agree
with a sequence of points along some Cayley projections.

Note in particular that we have the holomorphic isometry ρ−1
Φ (b) = Vb ∼=

Bm (b ∈ Φ). By Fatou’s theorem form-ball, the restriction h|Vb
of a bounded

holomorphic function h has admissible limit at almost all points on ∂Vb ∼=
∂Bm.
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3.3 The Universal Space

Let

S := {(b, q) | q ∈ ∂Vb − {b}} ⊂ Reg(∂Ω)× Reg(∂Ω)−∆Reg(∂Ω).

Recall that the orbit consisting of all r− 1 boundary components is exactly
Er−1 = Reg(∂Ω). Note also that any r − 1 boundary component is biholo-
morphic to an irreducible bounded symmetric domain Ω1 of the same type
as Ω but of rank r − 1. So π−1(gN) ∼= Ω1 and we have the fibration

π : Reg(∂Ω) → G0/N, π−1(gN) ∼= Ω1.

Using the projection of the first factor in S, we get the following fibration:

π1 : S → Reg(∂Ω), π−1
1 (b) = ∂Vb − {b} ∼= ∂Bm − {pt},

where the isomorphism on fibre is holomorphically isometric. Hence we get
a two-layer fibration

S → Reg(∂Ω) → G0/N.

We would need to discuss various measures for the sets in the above
picture. Let {µ} be the Haar measure (class) on G0/N . Since G0/N
parametrizes all rank r − 1 boundary components, when we say ‘almost
all’ rank r − 1 boundary components, it is always with respect to the mea-
sure {µ}. Terminology about measurability of boundary components of
lower rank is defined analogously. For any irreducible bounded symmet-
ric domain, it is in particular a bounded subset in Cn. Thus it inherits the
Lebesgue measure from Cn. We would need to discuss the Lebesgue measure
λ on Ω1. The Haar measure on ∂Bm would be denoted by σ.

Recall that for a fibration over measurable space P → (X,m1) with mea-
surable fibre (F,m2), P can be given a product measure {m1×m2} on which
the usual Fubini’s theorem applies. It means that we can also integrate mea-
surable subsets in P by the other slicing corresponding to {m2×m1}. In our
situation, Reg(∂Ω) is equipped with the product measure {µ×λ}. The uni-
versal space S is equipped with two equivalent product measures {µ×λ×σ}
and {σ×µ×λ}. This equivalence of two different slicings is important when
we prove the existence of Cayley limits for bounded holomorphic functions
with respect to a family of Cayley projections.

3.4 Proof of Theorem (3.1)

The proof of Theorem (3.1) consists of two steps:
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1. Fix a particular rank r − 1 boundary component with an extra as-
sumption to assert the existence of the Cayley limit.

2. Show that almost all rank r − 1 boundary components would satisfy
the extra assumption.

In the following, we always assume Ω ⊂ Cn to be an irreducible bounded
symmetric domain of rank r ≥ 2 and ∂Ω is the topological boundary in the
compact dual. Note also that a rank r − 1 boundary component lies in the
regular part of ∂Ω, which we denote Reg(∂Ω).

3.4.1 Step 1

Proposition 3.6. Let Φ ⊂ Reg(∂Ω) be a rank r−1 boundary component and
ρΦ : Ω → Φ a Cayley projection defined by {γk} ⊂ Aut (Ω). For a bounded
holomorphic function h defined on Ω, assume there is a dense subset E ⊂ Ω
such that for each point p ∈ E, the limit of hk(p) := γ∗kh(p) exists, then
hΦ := lim

k→∞
hk exists on all of Φ and is bounded holomorphic.

Proof. Since ρ(Ω) = Φ, any p ∈ Ω is inside certain fibre, say ρ−1(b) for a
point b ∈ Φ. Note that the fibre ρ−1

Φ (b) ∼= Bm, if p ∈ Ω ∩ ρ−1
Φ (b), then γk(p)

converges to b as k → ∞ admissibly in the sense of m-Ball. By Fatou’s
theorem for m-ball, we know that the set of point E ⊂ Ω such that the limit
of hk exists is non-empty. Suppose the admissible limit of h|ρ−1

Φ (b) exists

at the point b ∈ ∂(ρ−1
Φ (b)) ∼= ∂Bm and the limiting value is η, then the

sequence hk|ρ−1
Φ (b) converges in the pointwise sense to the constant function

η : Φ → C.
Assume there is a dense subset E ⊂ Ω such that for each point p ∈ E,

the limit of hk(p) exists. Then hk converges in the pointwise sense to some
hΦ on the dense subset E ⊂ Ω. In fact, it follows that hk converges in the
pointwise sense to some hΦ on all of Ω. To see this, let z ∈ Ω. Suppose
ε > 0. In any open ball B(z, r) of radius r > 0 centred at z, there is a point
p ∈ E ∩ B(z, r) since E is dense in Ω. Fix any k ∈ N. There exists a small
enough r > 0 so that |hk(z) − hk(p)| < ε

3 by the continuity of hk. Also for
k and l large enough, we have |hk(p)− hl(p)| < ε

3 since p ∈ E. Thus

|hk(z)− hl(z)| ≤ |hk(z)− hk(p)|+ |hk(p)− hl(p)|+ |hl(p)− hl(z)| < ε

for r small enough and k, l large enough. This implies that {hk(z)} is Cauchy
for any z ∈ Ω and hence hk converges in the pointwise sense on all of Ω.
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Since h is bounded on Ω, each hk is bounded on Ω implies that hΦ
is bounded. By Montel’s theorem, {hk} is a normal family. There is a
subsequence {hkj} that converges on compact subsets of Ω to hΦ. Hence hΦ
is holomorphic.

Fix a bounded holomorphic function h defined on Ω and a Cayley-
projection ρΦ : Ω → Φ. The assumption in proposition (3.6) can be written
as follows:

(♭Φ): there is a dense subset E ⊂ Ω such that for each p ∈ E, the limit
of hk(p) := γ∗kh(p) exists for any {γk} ⊂ Aut (Ω) defining ρΦ.

Let EΦ,ρΦ ⊂ Φ be the set of points on Φ where the Cayley limit of h
with respect to the Cayley projection ρΦ do not exist. We define also:

(♭Φ)’: the exceptional set EΦ,ρΦ ⊂ Φ is of (Lebesgue) measure zero.

Lemma 3.7. For a bounded holomorphic function h on Ω and a Cayley
projection ρ : Ω → Φ, (♭Φ) is equivalent to (♭Φ)’. Hence in proposition
(3.6), the assumption (♭Φ) can be replaced by (♭Φ)’.

Proof. First note that if property (♭Φ) is satisfied, then we may apply propo-
sition (3.6) to see that EΦ,ρ is even empty.

For the converse, consider the fibration ρ : Ω → Φ. If the set of excep-
tional points EΦ,ρ is of measure zero, then

E :=
∪

{ρ−1(b) : b ∈ Φ− EΦ,ρ}

is a desired dense subset in Ω. To see this, we must claim that for any z ∈ Ω
and any r > 0, we have B(z, r) ∩ ρ−1(b) ̸= ∅ for some b ∈ Φ− EΦ,ρ. If not,
let r0 > 0 to be such that B(z, r0)∩E = ∅. Then for any point p ∈ B(z, r0),
h(ρ(p)) does not exists. If suffices to show that ρ(B(z, r0)) ⊂ Φ is of positive
measure to derive the desired contradiction.

For later purposes, note that

B(z, r0) ⊂
∪

{ρ−1(b) : b ∈ ρ(B(z, r0))}.

Since ρ : Ω → Φ is a fibration, it is in particular an open map. For some
small enough t > 0, there is δ > 0 such that ρ(B(z, t)) ⊂ B(ρ(z), δ). But
then the open subset B(ρ(z), δ) ⊂ ρ(B(z, r0)) is of positive measure. This
is impossible.
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In order to get theorem (3.1), we will show that for almost all Φ ⊂
Reg(∂Ω), there exists ρΦ satisfying (♭Φ)’. Thus we need to find a family
P = {ρΦ} of Cayley projections so that almost all ρΦ in the family P satisfy
(♭Φ)’. In fact, we will do even more. Instead of finding one particular family
of Cayley projections, we are going to show that for any family of Cayley
projections, almost all ρΦ in the family satisfy (♭Φ)’.

3.4.2 Step 2

Let h be a bounded holomorphic function on Ω. For every gN ∈ G0/N , to its
corresponding rank r − 1 boundary component π−1(gN) := Φ ⊂ Reg(∂Ω),
we pick a Cayley projection ρΦ : Ω → Φ. Thus it means that we have chosen
a family of Cayley projections {ρΦ}. We can now talk about Cayley limits
of h with respect to the family of Cayley projections {ρΦ}.

Define EΦ ⊂ Φ to be the subset so that at each point p ∈ EΦ, h has
no Cayley limit at p (with respect to ρΦ in a chosen family {ρΦ}). Note
that Φ ∼= Ω1 has the measure λ = λΦ, which is inherited from Ω1. We
call ρΦ exceptional if λ(EΦ) > 0. Note also that when a family of Cayley
projections {ρΦ} is chosen, we can measure the family by the measure {µ}
of G0/N since we many identify {ρΦ} to subset of G0/N . Define L ⊂ {ρΦ}
to be the set of all exceptional Cayley projections in the family and L to be
the identification of L in G0/N .

Suppose {ρΦ} is a family of Cayley projections such that µ(L) > 0, then
the product measure of the preimage of L under π : Reg(∂Ω) → G0/N
is also of positive measure, ie., µ(π−1(L)) > 0. Similarly, we also have
(µ× λ× σ)(π−1

1 π−1(L)) > 0.
Given the existence of a family of Cayley projections with µ(L) > 0, we

are going to obtain the contradiction that there is a subset of π−1
1 π−1(L),

such that it has positive measure on one interpretation but at the same time
of zero measure in another interpretation involving the Fatou’s theorem on
complex m-ball.

Lemma 3.8. For any family of Cayley projections {ρΦ}, the exceptional set
L must have measure zero, ie., µ(L) = 0.

Proof. Suppose µ(L) > 0. For each exceptional Cayley projection ρΦ ∈ L,
the exceptional set of points EΦ ⊂ Φ has λ(EΦ) > 0. Collect all such
exceptional sets and denote by

E =
∪

{EΦ : ρΦ ∈ L} ⊂ Reg(∂Ω).

12



Note that E ⊂ π−1(L) ⊂ Reg(∂Ω). Moreover, we have µ(L) > 0 (by
assumption) and λ(EΦ) > 0 (from the meaning of being exceptional), so
that (µ× λ)(E) > 0.

The preimage of E ⊂ Reg(∂Ω) under the fibration π1 : S → Reg(∂Ω)
is a subset of S ⊂ Reg(∂Ω) × Reg(∂Ω). In fact, π−1

1 (E) = E × T for some
subset T ⊂ Reg(∂Ω). The subset T is a union of sets of the form ∂Vb −{b},
where there is a holomorphic isometry Vb ∼= Bm for some positive integer m.
We can measure E×T by the measure {(µ×λ)×σ} as discussed previously,
which corresponds to the slicing of S by using the measure {µ× λ} (which
corresponds to Reg(∂Ω)) and followed by σ (which corresponds to ∂Bm).
Note that ((µ×λ)×σ)(E×T ) = ((µ×λ)×σ)(π−1

1 (E)) > 0, as (µ×λ)(E) > 0.
Recall the definition of the universal space

S = {(b, q) ∈ Reg(∂Ω)× Reg(∂Ω)|q ∈ ∂Vb − {b}}.

One observe that q ∈ ∂Vb − {b} if and only if b ∈ ∂Vq − {q}. Thus E is
contained in a union of sets of the form ∂Vq −{q}. This exactly means that
we can slice E × T by using the measure σ followed by {µ× λ}.

Since ∂Vq ∼= ∂Bm, a point x ∈ E∩(∂Vq−{q}) is such that the admissible
limit (in the sense ofm-ball) for h|Vq does not exist at x. By Fatou’s theorem
for m-ball, σ(E ∩ (∂Vq − {q})) = 0. Hence 0 < (µ × λ × σ)(E × T ) =
(σ × µ× λ)(E × T ) = 0. This is the desired contradiction.

This completes step 2 and hence we obtain theorem (3.1).

4 Averaging Arguments for Holomorphic Maps

In this part, we discuss the averaging arguments, which will be applied
in the proof of the main theorem (1.1) for the linearization of the Cayley
projection.

4.1 A theorem of H. Cartan

The following lemma is a simple observation for holomorphic maps between
bounded circular domains. The idea is already known to H. Cartan in [1].

Lemma 4.1. Let Ω1 ⊂ Cn and Ω2 ⊂ Cm be bounded complete circular
domains. Suppose F : Ω1 → Ω2 is a holomorphic map. Then

F (z) = e−iθF (eiθz), ∀eiθ ∈ S1, ∀z ∈ Ω1,

if and only if F is a linear transformation Cn → Cm.
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Proof. Expand F (z) = e−iθF (eiθz) in homogeneous series expansions and
compare term by term.

We may view the above lemma slightly differently. For any continuous
complex-valued function f : Ω → C defined on a bounded circular domain
Ω ⊂ Cn, we may define the S1 action

(eiθ · f)(z1, . . . , zn) := f(e−iθz1, . . . , e
−iθzn).

This in fact induces a unitary representation of S1 on L2(Ω) (we need the
minus sign to make sure it is a homomorphism). Suppose now F : Ω1 → Ω2

is a holomorphic map between bounded complete circular domains such that
F (z) = e−iθF (eiθz). The relation F (z) = e−iθF (eiθz) implies that F is a
linear transformation. Thus the pull-back

F ∗ : L2(Ω2) → L2(Ω1)

is a linear map between Hilbert spaces.
For each θ ∈ R , denote the S1-action (eiθ · h)(z) = h(e−iθz) on L2(Ω1)

and L2(Ω2) by T
θ
1 : L2(Ω1) → L2(Ω1) and T

θ
2 : L2(Ω2) → L2(Ω2) receptively.

Then F ∗ is S1-equivariant, ie., T θ
1F

∗ = F ∗T θ
2 since for any h ∈ L2(Ω2) and

z ∈ Ω1,
(T θ

1F
∗h)(z) = (T θ

1 (h ◦ F ))(z) = h(F (e−iθz)) = h(e−iθF (z))
= T θ

2 (h(F (z))) = (F ∗T θ
2 h)(z) .

We record this as

Corollary 4.2. Let F : Ω1 → Ω2 be a holomorphic map between bounded
complete circular domains. Then F ∗ : L2(Ω2) → L2(Ω1) is S1-equivariant
if and only if F is a linear transformation.

Note that in this corollary, F ∗ may be the zero map. For latter appli-
cation, we would need to show that under geometric conditions, such F ∗

would not be the zero map.

4.2 Linearization of bounded holomorphic maps

We are going to construct S1-equivariant maps from given holomorphic maps
by taking average, which is the following well-known

Lemma 4.3. Suppose F : Ω1 → Ω2 is a bounded holomorphic map between
bounded complete circular domains. Define

F̃ (z) :=

∫ π

−π
eiθF (e−iθz)

dθ

2π
.

14



Then F̃ is S1-equivariant. In particular, this implies that F̃ is a linear
transformation.

For our application, we would take Ω1 and Ω2 to be bounded symmetric
domains, which are bounded complete circular, and F to be the Cayley
projections.

4.3 K-equivariant holomorphic maps

Now we take Ω1 and Ω2 to be bounded symmetric domains of the same
type with possibly different dimensions. By using the Harish-Chandra co-
ordinates, we may view both Ω1 and Ω2 in some Cn. Even the argu-
ment would hold for more general situations, for our purpose, we take
Ω1 = Ω ∼= G0/K = G0(x0) and Ω2 = Φ to be a rank r − 1 boundary
component of Ω. The set of all rank r − 1 boundary components form an
orbit Er−1 = G0(cΓx0) for some partial Cayley transform cΓ. Geometrically
the orbit Er−1 is a disjoint union of boundary symmetric domains and every
one of them is biholomorphic to Φ. Write Er−1 =

⨿
k∈K

kΦ (recall that each

boundary component is of the form ξ−1kcΨ−ΓXΓ, 0 = ad(k)ξ−1cΨ−ΓXΓ, 0).
Define |Er−1| = {Ω′ : Ω′ = π−1

r−1(gN), gN ∈ G0/N}, which is a set consists
of all rank r − 1 boundary components as elements. We may view the set
Φ ⊂ Er−1 as an element in |Er−1| and talk about K-actions in the sense
that each element k ∈ K send the element Φ ∈ |Er−1| to another element
kΦ ∈ |Er−1|. The K-action on |Er−1| is transitive.

Let HΦ : Ω → Φ be a bounded holomorphic map. Suppose dimΩ = n
and dimΦ = m < n. We may put Ω ⊂ Cn and

⨿
kΦ in a different copy of

Cn ∼= m+. Now for each k ∈ K, kΦ is also in Cn. Let (kHΦ) : Ω → kΦ be
defined by (kHΦ)(z) := k(HΦ(z)) for each z ∈ Ω.

Lemma 4.4. Let HΦ : Ω → Φ be a bounded holomorphic map between
irreducible bounded symmetric domains of the same type so that Φ ⊂ Ω ⊂ Cn

and Ω ∼= G0/K. Take dk to be the Haar measure on K and define

H̃(z) :=

∫
K
kHΦ(k

−1z)dk.

Then H̃ : Ω → Cn is either the zero map or a constant multiple of the
identity map idΩ.

Proof. Note that H̃ : Ω → Cn is a K-equivariant holomorphic map between
domains in Cn. Because the centre of K is S1, H̃ is in particular S1-
equivariant and hence a linear transformation Cn → Cn. Moreover, since
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the isotropy subgroup K acts irreducibly on Cn ∼= m+, by Schur lemma, the
map H̃ can either be 0 or a constant multiple of the identity map.

For our purpose, we need to make sure that such an K-averaging would
produce non-zero maps. This can be achieved by geometric arguments under
the assumption of the main theorem (1.1). Another technical issue in the
proof of theorem (1.1) involving the averaging argument is that such kind of
averaging would produce functions outside the algebra under consideration.
This problem could be addressed by some density arguments, cf. [14] p. 26
Lemma 3.

5 The Solution to Extension Problem

For the proof of theorem (1.1), we also need the following lemmas which
follow readily from Moore’s Ergodicity theorem:

Lemma 5.1 (cf. Zimmer [22], Proposition 2.1.7). Let G be a connected
real Lie group, Γ ⊂ G be an irreducible lattice and H ⊂ G be a noncompact
closed subgroup. Then except for a set E ⊂ G/H of measure zero, the orbit
Γ(gH) is dense in G/H.

This implies the following

Lemma 5.2. Let Ω ∼= G0/K be a bounded symmetric domain of rank r ≥
2 and Γ ⊂ Aut0(Ω) be a torsion-free irreducible lattice, M := Ω/Γ. Let
P ⊂ Ω be a maximal polydisk of Ω, which induces a canonical embedding
Aut(∆)r ↪→ Aut0(Ω). Write ψt(z) =

z+t
1+tz so that Ψ = {ψt : −1 < t < 1} ⊂

Aut(∆) gives rise to a one-parameter subgroup in ∆ and H = {id∆}r−1 ×
Ψ ⊂ Aut(∆)r ↪→ Aut0(Ω). Let {φtk} = {(eiθ1 , . . . , eiθr−1 , ψtk)} ⊂ (∂∆)r−1×
Ψ be a sequence. Suppose the coset ΓH is dense in G0/H, then for almost
all (eiθ1 , . . . , eiθr−1) ∈ (∂∆)r−1, there exists a discrete sequence {γk} ⊂ Γ
such that γk = φtkδk for some {δk} ⊂ Aut0(Ω) and {tk} ⊂ (−1, 1) so that
δk → id and tk → 1.

Lemma (5.2) in particular says that if p ∈ Φ is a point at a rank r − 1
boundary component Φ and p = ρΦ(z) for some z ∈ Ω and Cayley projection
ρΦ : Ω → Φ defined by {φtk}, then we can find a sequence {γk} ⊂ Γ such
that not only is p the limit point of φtk(z), p is also the limit point of
γk(z). This implies that for any holomorphic function s ∈ F , the limit of
the pullbacks φ∗

tk
s is the same as the limit of the pullbacks γ∗ks. To see this,
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note that for any z ∈ Ω,

|φ∗
tk
s(z)− γ∗ks(z)| = |(s ◦ φtk)(z)− (s ◦ φtk)(δk(z))|

= |
∫ δk(z)

z
(s ◦ φtk)

′(ξ)dξ|

≤ C ∥s ◦ φtk∥L∞(Ω) |δk(z)− z| (Cauchy’s estimate)

≤ C ∥s∥L∞(Ω) |δk(z)− z| → 0,

since δk → id. For any γ ∈ Γ and s ∈ F , γ∗s ∈ F and moreover,
limk→∞ γ∗ks ∈ F , we see that ρ∗ΦsΦ ∈ F .

5.1 Proof of the Extension Theorem

Proof. For almost all g ∈ G0, ΓH
g is dense in G0/H

g (here Hg = gHg−1)
by lemma (5.1). Replacing H by Hg if necessary, we may assume ΓH is
dense in G0/H.

Let s ∈ F = F ∗Hol(Ñ ,∆), ie., s = F ∗h : Ω → ∆ for some h ∈
Hol(Ñ ,∆). By the nondegeneracy assumption (†) , we may let h to be
nonconstant on F (Ω) so that s is nonconstant. Let Φ ⊂ ∂Ω be a rank
r − 1 boundary component and ρΦ : Ω → Φ be a Cayley projection. In
Harish-Chandra coordinate, Φ can be viewed as a totally geodesic symmetric
subspace of another copy of Ω ⊂ Cn so that we may let 0 ∈ Φ ⊂ Cn. Thus

ρΦ : Ω → Φ

Z 7→ (ρ1Φ(Z), . . . , ρ
n
Φ(Z)),

where n = dimΩ. By theorem (3.1), we may assume the Cayley limit
sΦ : Φ → ∆ of s exists on Φ with respect to ρΦ. Then ρ

∗
ΦsΦ ∈ F .

We now want to linearize ρ∗ΦsΦ : Ω → ∆. By averaging sΦ over S1 as
in lemma (4.3), we obtain a S1-equivariant holomorphic map s̃Φ : Φ → ∆.
Note that we can make sure that with the S1-averaging s̃Φ, the pull-back
ρ∗Φs̃Φ still lies inside F by the lemma (5.2) and the fact that F is closed
under taking locally uniform limits. Replace sΦ by s̃Φ if necessary, we may
assume a priori that sΦ is S1-equivariant. Thus

ρ∗ΦsΦ(Z) = λ1Φρ
1
Φ(Z) + · · ·+ λnΦρ

n
Φ(Z)

for some constants λiΦ depending on the Cayley limit sΦ. By Finsler metric
rigidity (see [11] and [12], cf. also [13] and [14]) , we may find a uniform
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lower bound a > 0 so that for any choice of Cayley limit sΦ, λ
i
Φ > a > 0.

This implies that we can further take

ρ∗ΦsΦ(Z) = λ1ρ1Φ(Z) + · · ·+ λnρnΦ(Z)

where the constants λi are independent of Φ. Combined with the fact that
ρ∗ΦsΦ ∈ F = F ∗Hol(Ñ ,∆), we see that for all i, ρiΦ = F ∗µiΦ for some

bounded holomorphic function µiΦ : Ñ → ∆, ie., µiΦ ∈ Hol(Ñ ,∆). Denote

µΦ = (µ1Φ, . . . , µ
n
Φ) : Ñ → Cn. Take HΦ = ρΦ in lemma (4.4), we have

ρ̃(z) :=

∫
K
kρΦ(k

−1z)dk

is either the zero map or a nonzero multiple of the identity map idΩ.
We claim that the linear transformation ρ̃ is not zero map. To see this, it

suffices to show that (dρ̃)0 = ρ̃ is non-zero at 0. Without loss of generality,
we may assume the Cayley projection ρΦ is constructed from a minimal
disk D ⊂ Ω passing through 0 ∈ Ω and in the Harish-Chandra coordinate
of Ω, D is orthogonal to Φ in the Euclidean sense. This means that we may
decompose the tangent space T0Ω ∼= T0Φ⊕T0Φ⊥, where T0Φ corresponds to
vectors parallel to Φ and T0Φ

⊥ corresponds to vectors in ρΦ-fibre directions.
To show (dρ̃)0 is not zero, it suffices to see that its trace tr((dρ̃)0) is non-zero.
We know that (dρΦ)0(T0Φ

⊥) = 0 and (dρΦ)0(T0Φ) = T0Φ. The averaging
ρ̃ = (dρ̃)0 consists of conjugations by k ∈ K. Since trace is invariant under
conjugation, the trace of the averaging trρ̃ is equal to the trace of (dρΦ)0,
which is clearly non-zero.

Thus we may, replace ρΦ by ρ̃ if necessary, assume that ρΦ isK-equivariant
so that it is of the form ρΦ = 1

c idΩ for some constant c ̸= 0. From ρ∗ΦsΦ ∈
F = F ∗Hol(Ñ ,∆), we know that 1

c idΩ = ρΦ = F ∗µΦ = F ∗(µ1Φ, . . . , µ
n
Φ) for

some µiΦ ∈ Hol(Ñ ,∆). The theorem is proved by taking R = cµΦ : Ñ →
Cn.

6 Applications to Rigidity Theorems

The first link between bounded holomorphic functions and rigidity problems
was given by the Embedding Theorem in [12]. In Theorem 1.1 we solved
the Extension Problem, which is the problem of ‘inverting’ the holomorphic
embedding F : Ω → Ñ as a bounded holomorphic map, i.e., finding a holo-
morphic extension R : Ñ → Cn of the inverse i : F (Ω) → Ω b Cn as a
bounded holomorphic map. As a first application of Theorem 1.1, we are go-
ing to prove for compact quotients X = Ω/Γ a factorization result called the
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Fibration Theorem for holomorphic mappings f : X → N inducing isomor-
phisms on fundamental groups which says that there exists a holomorphic
fibration ρ : N → X such that ρ ◦ f ≡ idX . (Here and henceforth we use
X to denote quotients Ω/Γ.) After lifting f to F : Ω → Ñ , compactness is
used to show that certain bounded plurisubharmonic functions constructed
on Ñ have to be constant, which allows us to show that R descends from Ñ
to N .

A primary objective in our research relating bounded holomorphic func-
tions to rigidity problems is to study holomorphic mappings on X into tar-
get manifolds N which are uniformized by an arbitrary bounded domain
D on a Stein manifold, N := D/Γ′. We study further the situation where
f : X → N = D/Γ′ induces an isomorphism on fundamental groups and
look for necessary and sufficient conditions which guarantee that the lifting
F : Ω → D is a biholomorphism. We are going to establish the latter un-
der the assumption that N is of finite intrinsic measure with respect to the
Kobayashi-Royden volume form. For a generalization of the Fibration The-
orem to the case where X is of finite volume, we need to show the constancy
of certain bounded plurisubharmonic functions. When N is a complete
Kähler manifold of finite volume, we have at our disposal the tool of inte-
gration by parts. We resort to such techniques, by passing first of all to the
hull of holomorphy of D and making use of the canonical Kähler-Einstein
metric constructed by [2] and shown to be complete in [17]. We exploit
the hypothesis that N = D/Γ′ is of finite intrinsic measure with respect to
the Kobayashi-Royden volume form to prove that N can be enlarged to a
complete Kähler-Einstein manifold of finite volume, which is enough to show
that the bounded plurisubharmonic functions constructed are constant. The
latter hypothesis on N appears to be the most natural geometric condition,
as the notion of intrinsic measure, unlike the canonical Kähler-Einstein met-
ric, is elementary and defined for any complex manifold, and its finiteness
is a necessary condition for the target manifold to be compactifiable, i.e.,
to be biholomorphic to a Zariski open subset of a compact complex mani-
fold. The passage from a quotient of a bounded domain of finite intrinsic
measure to a complete Kähler-Einstein manifold of finite volume involves
an elementary a-priori estimate on the Kobayashi-Royden volume form of
independent interest applicable to arbitrary bounded domains.

6.1 Preliminaries and statements of results

We are going to apply the solution to the Extension Problem given in The-
orem 1.1 to holomorphic mappings f : X → N which induce isomorphisms
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on fundamental groups. We assume that N is compactifiable. In this case
we prove that N can be projected onto f(X). More precisely, we have

Theorem 6.1. (The Fibration Theorem) Let Ω be a bounded symmetric
domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice,
X := Ω/Γ. Let N be a compact complex manifold and denote by Ñ its
universal cover, N = Ñ/Γ′. Let f : X → N be a holomorphic mapping

into N inducing an isomorphism f∗ : Γ
∼=−→ Γ′ on fundamental groups and

denote by F : Ω → Ñ the lifting to universal covering spaces. Suppose
(X,N ; f) satisfies the nondegeneracy condition (†). Then, f : X → N is a
holomorphic embedding, and there exists a holomorphic fibration ρ : N → X
such that ρ ◦ f = idX .

In the Fibration Theorem since f∗ : Γ
∼=−→ Γ′, there is a smooth map

g0 : N → X such that (g0)∗ = (f∗)
−1 on fundamental groups. When N

is Kähler there is a harmonic map g : N → X homotopic to g0, and by
the method of strong rigidity starting with [19], g gives the holomorphic
fibration ρ : N → X. The method of harmonic maps fails when we drop
the Kähler condition on N , and the strength of the Fibration Theorem lies
on the use of bounded holomorphic functions on the universal cover Ñ of
N in place of the Kähler condition. The Fibration Theorem can also be
generalized to the case where X is of finite volume and N is compactifiable.
This generalization and its application will be taken up in our next result.

One of our primary objectives in relating bounded holomorphic func-
tions to rigidity problems is to develop a theory applicable to holomorphic
mappings from irreducible finite-volume quotients of bounded symmetric
domains of rank ≥ 2 by torsion-free lattices to complex manifolds N uni-
formized by arbitrary bounded domains. In this case the nondegeneracy
condition (†) for the Embedding Theorem is always satisfied for any non-
constant holomorphic mapping f : X → N . We will apply Theorem 1.1
(the Extension Theorem) to such mappings assuming now as in the Fibra-
tion Theorem that the induced map on fundamental groups is an isomor-
phism. We look for some natural geometric condition on N which allows
us to establish an analogue of the Fibration Theorem, in which case one
expects the fibers on Ω to reduce to single points. We establish the follow-
ing principal result in §6 yielding a biholomorphism under the assumption
that the target manifold N = D/Γ′ is of finite measure with respect to the
Kobayashi-Royden volume form, a condition necessary for N to admit a
realization as a Zariski open subset of some compact complex manifold.

Theorem 6.2. (The Isomorphism Theorem) Let Ω be a bounded symmetric
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domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice,
X := Ω/Γ. Let D be a bounded domain on a Stein manifold, Γ′ be a torsion-
free discrete group of automorphisms on D, N := D/Γ′. Suppose N is of
finite measure with respect to the Kobayashi-Royden volume form, and f :

X → N is a holomorphic map which induces an isomorphism f∗ : Γ
∼=−→ Γ′.

Then, f : X
∼=−→ N is a biholomorphic map.

Remark 6.3. We note that in the statement of the Isomorphism Theorem
we do not need to assume that D is simply connected. We will need a slight
variation in the formulation of the Extension Theorem. In the proof of the
latter result it is not essential to use the universal covering space Ñ . We
may use any regular covering τ : Ñ → N provided that the holomorphic
mapping f : X → N admits a lifting to F : Ω → Ñ .

6.2 Complete Kähler-Einsten metrics and estimates on the
Kobayashi-Royden volume form

For the Isomorphism Theorem we are interested in the case where the target
manifold N is uniformized by a bounded domain D on a Stein manifold. In
our study of such manifolds we will need to resort to the use of canonical
complete Kähler metrics. When D is assumed furthermore to be a domain of
holomorphy, we have the canonical Kähler-Einstein metric. The existence
of the metric was established by [2], and its completeness by [17]. More
precisely, we have

Theorem 6.4. (Existence Theorem on Kähler-Einstein Metrics) Let M be
a Stein manifold and D b M be a bounded domain of holomorphy on M .
Then, there exists on D a unique complete Kähler-Einstein metric dsKE

of Ricci curvature −(n + 1). The metric is furthermore invariant under
Aut(D).

Remark 6.5. We note that invariance of ds2KE under Aut(D) follows from
uniqueness and the Ahlfors-Schwarz Lemma for volume forms. Furthermore,
for the existence of ds2KE the bounded domain D b M has to be assumed
a domain of holomorphy. It was in fact proven in [17] that any bounded
domain onM admitting a complete Kähler-Einstein metric of negative Ricci
curvature satisfies the Kontinuitätssatz of Oka’s, and must therefore be a
domain of holomorphy.

In the formulation of the Isomorphism Theorem we assume that the
target manifold N = D/Γ′ is of finite intrinsic measure with respect to
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the Kobayashi-Royden volume form. This notion of intrinsic measure (cf.
6.2) is defined for any complex manifold. For the proof of the Isomorphism
Theorem we need nonetheless to work with the complete Kähler-Einstein
metric. This is done by first passing to the hull of holomorphy D̂ of D. For
the passage and for estimates in the proof it is necessary to compare various
canonical metrics and volume forms, as given in the following Comparison
Lemma which results from the Ahlfors-Schwarz Lemma for Kähler metrics
and for volume forms (cf. [9] and the references given there).

Lemma 6.6. (The Comparison Lemma) Let D be a bounded domain on
some n-dimensional Stein manifold, ds2KE be the canonical complete Kähler-
Einstein metric of constant Ricci curvature −(n+ 1), and denote by dVKE

its volume form. Then, for the Carathéodory metric κ and the Kobayashi-
Royden volume form dVKR on D, we have

ds2KE ≥ 2κ

n+ 1
, dVKE ≤ dVKR .

Let ds2Bn be the Poincaré metric on the unit ball Bn ⊂ Cn normalized to
have constant Ricci curvature −(n + 1), with volume form dVPoin. On a
complex manifold M let KM be the space of all holomorphic maps f : Bn →
M . For a holomorphic n-vector η its norm with respect to the Kobayashi-
Royden volume form dVKR is given by ∥η∥dVKR

= inf{∥ξ∥dVPoin
: f∗ξ = η

for some f ∈ KM}. We will need the following estimate for the Kobayashi-
Royden volume form on a bounded domain in Cn in terms of distances to
the boundary.

Proposition 6.7. Let U b Cn be a bounded domain, and denote by ρ = ρU
the Kobayashi-Royden volume form on U . For z ∈ U denote by δ(z) the
Euclidean distance of z from the boundary ∂U . Write dV for the Euclidean
volume form on Cn. Then, there exists a positive constant c depending only
on n and the diameter of U such that

ρ(z) >
c

δ(z)
dV .

Proof. We will first deal with the case where n = 1. In this case, the
Kobayashi-Royden form is the same as the infinitesimal Kobayashi-Royden
metric, which agrees with the Poincaré metric, and we have the stronger
estimate where c

δ(z) is replaced by c
δ2(z)(logδ)2

(cf. [17]). The latter estimate

relies on the Uniformization Theorem and does not carry over to the case of
general n. We will instead give the weaker estimate as stated in Proposition
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6.7 for n = 1 using the Maximum Principle and Rouché’s Theorem and give
the necessary modification for general n.

Let z ∈ U and f : ∆ → U be a holomorphic function such that f(0) = z.
Denote by w the Euclidean coordinate on ∆. We will show that for some
absolute constant C to be determined, we have |f ′(0)| ≤ C

√
δ(z), which

gives the estimate ∥ ∂
∂z∥

2 ≥ c
δ(z) for c = 1

C2 . Let b ∈ ∂U be such that

|z − b| = δ(z). To get an upper estimate for |f ′(0)| we are going to show
that if |f ′(0)| were too large, then b would lie in the image f , leading to a
contradiction. To this end consider the function h(w) := f(w)− b, h : ∆ →
∆(2R) assuming U b ∆(R), R <∞. The affine linear part of h at 0 is given
by L(w) = h′(0)w + h(0) = f ′(0)w + (z − b), noting the trivial estimate
|f ′(0)| ≤ 2R by the Maximum Principle. Write h(w) = L(w) + E(w).
We claim that there is a constant a > 0 for which the following holds if
|f ′(0)| ≥ C

√
δ(z) for any constant C > 3

a .

(a) |L(w)| > 2δ(z) whenever |w| = a
√
δ(z) ;

(b) |E(w)| < δ(z) whenever |w| = a
√
δ(z) .

From (a) and (b) it follows that |h(w)| > δ(z) whenever |w| = a
√
δ(z). To

prove (b) of the claim observe that the ‘error’ term E(w) satisfies E(0) =
E′(0) = 0 and |E(w)| ≤ |h(w)|+ |L(w)| ≤ |h(w)|+ |f ′(0)||w|+ |z − b| ≤ 6R

for |w| < 1, by the Maximum Principle applied to E(w)
w2 , so that (b) is

valid whenever (6R)a2 < 1. As to (a) choose now the constant C such that
C > 3

a . Then, for |w| = a
√
δ(z),∣∣L(w)∣∣ ≥ (

C
√
δ(z)

)
·|w|−δ(z) > 3

a

√
δ(z)

(
a
√
δ(z)

)
−δ(z) > 2δ(z) , (1)

so that (1) holds for C > 3
a . For Proposition 6.7 in the case of n = 1 we can

conclude by applying Rouché’s Theorem to reach a contradiction whenever
|f ′(0)| ≥ C

√
δ(z). In view of the generalization to several variables, we give

the argument here. Assume |f ′(0)| ≥ C
√
δ(z). Consider ht(w) = L(w) +

tE(w) for t real 0 ≤ t ≤ 1. From (1) it follows that for 0 ≤ t ≤ 1 we have
|ht(w)| > (2− t)δ(z) > 0 whenever |w| = a

√
δ(z). For t = 0 the affine-linear

function L admits a zero at w = w0 := b−z
f ′(0) , |w| ≤

δ(z)

C
√

δ(z)
=

√
δ(z)

C <

a
√

δ(z)

3 . In particular, w0 ∈ ∆
(
a
√
δ(z)

)
for the zero w0 of L(w) = h0(w).

For 0 ≤ t ≤ 1 the number of zeros of ht on the disk ∆
(
a
√
δ(z)

)
is counted,

by the Argument Principle, by the boundary integral

1

2π

∫
∂∆

(
a
√

δ(z)
)√−1 ∂log|ht|2 =

1

2π

∫
∆
(
a
√

δ(z)
)√−1∂∂log|ht|2 . (2)
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The boundary integral is well-defined, takes integral values, and varies con-
tinuously with t, so that it is independent of t, implying that there exists
a zero of ht on the disk ∆

(√
δ(z)

)
; 0 ≤ t ≤ 1. In particular, for t = 1,

h1(w) = h(w) = f(w) − b, and f(w) = b has a solution on ∆
(√

δ(z)
)
,

contradicting with the assumption that b ∈ ∂U .
We now generalize the argument to several variables. Let f : Bn → U

be such that f(0) = z. Let again b ∈ ∂U be a point such that δ(z) = b.
Consider the linear map df(0). Assume U b Bn(R), R < ∞. Considering
h(w) := f(w) − z, h(Bn) b Bn(2R), by the Schwarz Lemma ∥df(0)(η)∥ ≤
2R∥η∥ for any η ∈ T0(Bn) ∼= Cn, where ∥ ·∥ denotes the Euclidean norm. To
prove Proposition 6.7 in general it suffices to get an estimate | det(df(0))| ≤
C
√
δ(z) for some constant C > 0 depending on U . In analogy to (a) and

(b) in the case of n = 1 for the purpose of arguing by contradiction (in
order to establish the estimate | det(df(0))| ≤ C

√
δ(z) ) we claim that for

U b Bn(R) ⊂ Cn there exist constants a,C > 0 depending only on n and R
for which the following holds assuming |det(df(0))| ≥ C

√
δ(z).

(a) ∥L(w)∥ > 2δ(z) whenever ∥w∥ = a
√
δ(z) ;

(b) ∥E(w)∥ < δ(z) whenever ∥w∥ = a
√
δ(z) .

Noting that ∥df(0)(w)∥ ≤ 2R∥w∥ the argument for (b) is the same as in the
case of n = 1, and it suffices to choose a such that (6R)a2 < 1. As for (a)
considering |w| ∈ ∂Bn(a

√
δ(z)) we have∣∣L(w)∣∣ ≥ ∥df(0)(w)∥ − ∥z − b∥ = ∥df(0)(w)∥ − δ(z) . (3)

To relate ∥df(0)(w)∥ to | det(df(0)| suppose df(0)(w) = ξ with ∥ξ∥ = α∥w∥.
Denoting by w⊥ resp. ξ⊥ the orthogonal complements of the nonzero vec-
tors w and ξ in Cn we consider the linear map Λ : w⊥ → η⊥ given by
Λ = π ◦ df(0)|w⊥ where π : Cn → η⊥ is the orthogonal projection. With re-
spect to orthonormal bases of the (n−1)-dimensional complex vector spaces
w⊥ resp. η⊥ we have | det(Λ)| ≤ (2R)n−1 by the Schwarz Lemma while

| det(df(0)| = α(det(Λ)), giving α ≥ | det(df(0)|
(2R)n−1 . Choosing now any positive

constant C such that C
(2R)n−1 >

3
a for ∥w∥ = a

√
δ(z) and | det(df(0))| >

C
√
δ(z) we have

α ≥ | det(df(0))|
(2R)n−1

>
C
√
δ(z)

(2R)n−1
>

3

a

√
δ(z) . (4)

Thus, for ∥w∥ = a
√
δ(z) and assuming |det(df(0)| > C

√
δ(z) we have by

24



(3) and (4)

∥L(w)∥ ≥ 3

a

√
δ(z)

(
a
√
δ(z)

)
− δ(z) > 2δ(z) , (5)

yielding (a) and proving the claim. From (a) and (b) it follows that ∥h(w)∥ >
δ(z) whenever ∥w∥ = a

√
δ(z). In terms of the Euclidean coordinates w =

(w1, ..., wn) of the domain manifold define as for n = 1 the holomorphic
map h(w) = f(w) − b. Decomposing h(w) = L(w) + E(w) as in the case
of n = 1, L(w) = df(0)(w) + (z − b), and using exactly the same argument
there we have a real one-parameter family of holomorphic maps ht(w) =
L(w)+tE(w). Hence, for 0 ≤ t ≤ 1 we have ∥ht(w)∥ ≥ ∥L(w)∥−t∥E(w)∥ ≥
(2 − t)δ(z) > δ(z) for w ∈ ∂Bn(a

√
δ(z)), hence ht(w) ̸= 0 for any w ∈

∂Bn
(
a
√
δ(z)

)
. For the analogue of Rouché’s Theorem we note that the affine

linear function L(w) = df(0)(w)+ (z− b) admits a unique zero at w = w0 =
(df(0))−1(b− z) on Cn. By hypothesis (for argument for contradiction) we
have ∥df(0)(η)∥ > 3

a

√
δ(z)∥η∥ for η ∈ T0(Bn) ∼= Cn, hence ∥df(0)−1(ξ)∥ <

a∥ξ∥
3
√

δ(z)
for ξ ∈ Tz(U) ∼= Cn, so that in particular w0 ∈ Bn

(
a
√
δ(z)

)
and

h0(w) = L(w) has a unique solution on Bn
(
a
√
δ(z)

)
. Suppose for some

t, 0 ≤ t ≤ 1, ht(w) = 0 is not solvable on Bn(a
√
δ(z)). Writing ht(w) =

(ht,1(w), · · · , ht,n(w)), the coefficients ht,k(w) cannot be simultaneously zero,
so that [ht] : Bn → Pn−1 is well-defined, and

(√
−1∂ ∂log|ht|2

)n ≡ 0, since
the (1,1)-form inside the parenthesis is nothing other than the pull-back of
the Kähler form of the Fubini-Study metric on Pn−1, which is everywhere
degenerate. If that happened, by Stokes’ theorem we would have

I(t) :=
1

(2π)n

∫
∂Bn

(
a
√

δ(z)
)√−1∂log|ht|2 ∧

(√
−1∂∂log|ht|2

)n−1
= 0 . (6)

The boundary integral is well-defined for 0 ≤ t ≤ 1, with I(0) = 1. Obvi-
ously I(t) varies continuously with t, but it is less clear that I(t) is an integer
for each t. To reach a contradiction to the assumption b ∈ ∂U (as in the use
of Rouché’s Theorem for n = 1), we proceed as follows. ht = L+ tE makes
sense for any real t, and, for ϵ sufficiently small, in the interval −ϵ ≤ t ≤ 1+ϵ,
ht is not equal to 0 on ∂Bn

(
a
√
δ(t)

)
. Hence, the boundary integral I(t) re-

mains well-defined. I(t) then varies as a real-analytic function in t. For t
sufficiently small, ht is a biholomorphism of Bn

(
a
√
δ(z)

)
onto its image. The

current
(√

−1∂∂log|ht|2
)n

over Bn
(
a
√
δ(z)

)
is given by (2π)nδx(t), where

x(t) is the unique zero of ht, and δx denotes the delta measure at x. Hence
I(t) = 1 for t sufficiently small. It follows that I(t) = 1 for 0 ≤ t ≤ 1 by real-
analyticity, and we have a contradiction at t = 1. The proof of Proposition
6.7 is complete.
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The Kobayashi-Royden volume form on a complex manifold M arises
from the space KM of holomorphic maps f : Bn →M . In the event whereM
is a bounded domain U in a Stein manifold Z, estimates for the Kobayashi-
Royden form can be localized using Cauchy estimates. More precisely, if b
lies on the boundary ∂U on Z, and B ⊂ Z is a small Euclidean coordinate
ball centred at b, any holomorphic map f : Bn → U must map Bn(r) into
B ∩ U for the Euclidean ball Bn(r) centred at 0 of radius r, for some r > 0
independent of f ∈ KU . This leads to an upper bound on the Kobayashi-
Royden volume form of B ∩ U in terms of that of U . We formulate it in
a more general form as follows, noting the monotonicity property of the
Kobayashi-Royden volume form.

Lemma 6.8. (Localization Lemma for the Kobayashi-Royden volume form)
Let π : U → Z be a bounded Riemann domain spread over a Stein manifold
Z, and W ⊂ Z be any open subset. Let K ⊂W be a compact subset. Then,
there exists a positive constant C depending on U , W and K such that for
any z ∈ K we have

µU (z) ≤ µU∩W (z) ≤ CµU (z) .

Proposition 6.9. Let π : U → Z be a bounded Riemann domain spread
over a Stein manifold Z, and W ⊂ U be an open subset. Let x ∈ U−W and
B ⊂ U be an open coordinate neighborhood of b in U , which we will identify
as a Euclidean open set, endowed with the Lebesgue measure λ. Suppose
Volume(B ∩W,µB) < ∞. Then, the closed subset B −W ⊂ B is of zero
Lebesgue measure.

Proof. The problem being local, we are led to the following special situation.
Identify Cn with R2n. Let I denote the unit interval [0, 1], and E ⊂ I2n be
a closed subset contained in I2n−1 × [ϵ, 1] for some ϵ, 0 < ϵ < 1, so that
I2n−1 × [0, ϵ) ⊂ I2n −E. On Cn −E denote by δ the Euclidean distance to
E, i.e. δ(x) = sup

{
r : Bn(x; r) ∩ E = ∅} for x /∈ E. By Proposition 6.7, we

have ∫
I2n−E

dV

δ
<∞ , (1)

where dV denotes the Euclidean volume form on R2n. Then, we need to
prove that λ(E) = 0 for the Lebesgue measure λ. Let S ⊂ I2n−1 be the
closed subset consisting of those s such that

(
{s} × I

)
∩ E ̸= ∅. Denote by

t the Euclidean variable for the last direct factor of I2n. For each s ∈ S
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observe that ∫
({s}×I)−E

dt

δ
= ∞ . (2)

To see this note that for each s ∈ S, δ(s, t) ≤ |t − t0| for any t0 such that
(s, t0) ∈ E. For s ∈ S taking t0 ∈ [ϵ, 1] to be the smallest number such
that (s, t0) ∈ E, the integral above dominates the integral

∫ t0
0

dt
t0−t = ∞,

as observed. As a consequence, by Fubini’s Theorem, the closed subset
S ⊂ I2n−1 is of zero Lebesgue measure, so that E ⊂ S × I is of zero
Lebesgue measure, as desired.

We note that, given any unramified covering map ν : M ′ → M , the
Kobayashi-Royden volume form µM onM agrees with that onM ′ by lifting,
since Bn is simply-connected. Using Proposition 6.7 we deduce that following
result crucial to the proof of the Isomorphism Theorem (Theorem 6.2). It
relates the covering domain D to its hull of holomorphy D̂, and allows us
to enlarge N to a manifold admitting a complete Kähler-Einstein metric of
finite volume.

Proposition 6.10. Let D ⊂ Z be an a bounded domain on a Stein manifold
Z, Γ′ ⊂ Aut(D) be a torsion-free discrete group of automorphisms of D such
that N = D/Γ′ is of finite measure with respect to µD. Let π : D̂ → Z be the
hull of holomorphy of D. Then, Γ′ extends to a torsion-free discrete group of
automorphisms Γ̂′ of D̂ such that, writing N̂ := D̂/Γ̂′, N̂ is of finite volume
with respect to µ

N̂
.

Proof. It is standard that Γ′ ⊂ Aut (D) extends canonically to a subgroup
Γ̂′ ⊂ Aut (D̂), Γ̂′ ∼= Γ′. We start by showing that Γ̃′ ⊂ Aut (D̂) is a torsion-
free discrete subgroup. Since torsion-freeness of Γ′ is a property of the
abstract group, Γ̂′ is also torsion-free. For the proof of discreteness suppose
otherwise, then there exists a sequence of distinct automorphisms µi ∈ Γ′

of D such that the corresponding sequence µ̂i ∈ Γ̂′ of automorphisms of
D̂ converges to an automorphism µ ∈ Aut (D̂). Clearly µ|D maps D into
the topological closure D ⊂ D̂. However, since the subgroup Γ′ ⊂ Aut (D)
for the bounded domain D is discrete, we must have π(µ(D)) ⊂ ∂D (in
Cn, n := dim(D)). In particular µ is of maximal rank ≤ n − 1 and cannot
be an automorphism, giving a contradiction and yielding the discreteness of
Γ̃′ ⊂ Aut (D̂).

Since µ
N̂

≤ µN on N , Volume(N,µ
N̂
) ≤ Volume(N,µN ) < ∞. On the

other hand, Volume(N̂−N,µ
N̂
) is obtained by integrating µ

N̂
over N̂−N . In

terms of local holomorphic coordinates which give local Lebesgue measures,
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we can write µ
N̂

= φ · λ, where φ is a bounded measurable function. Since

N̂ can be covered by a countable number of open Euclidean open sets Bα

such that Bα ∩ (N̂ − N) is of zero Lebesgue measure of each index α, we
conclude that Volume(N̂ , µ

N̂
) = Volume(N,µ

N̂
) <∞, as desired.

From Proposition 6.10 and the Existence Theorem on Kähler-Einstein
metrics (Theorem 6.4) on bounded domains of holomorphy, we have imme-
diately

Corollary 6.11. Let N̂ ⊃ N be the complex manifold as in Proposition
6.10. Then N̂ admits a unique complete Kähler-Einstein metric gKE of
finite volume and of constant Ricci curvature −(n+ 1), n = dimN .

6.3 Proof of the Fibration Theorem and the Isomorphism
Theorem

We deduce first of all the Fibration Theorem (Theorem 6.1) from the Ex-
tension Theorem (Theorem 1.1).

Proof. (The Fibration Theorem) By the hypothesis X := Ω/Γ and N =

Ñ/Γ′ are compact, f : X → N induces an isomorphism f∗ : π1(X) = Γ
∼=−→

Γ′ = π1(N) on fundamental groups and (X,N ; f) satisfies the condition (†)
concerning pull-backs of bounded holomorphic functions on Ñ by the lifting
F : Ω → Ñ of f : X → N to universal covers. Let R : Ñ → Ω be the
holomorphic mapping given by Theorem 1.1 such that R ◦F = idΩ. We are
going to prove that R descends to ρ : N → X.

Assume for simplicity that Ω is irreducible (and of rank ≥ 2). We have
first to prove that R(Ñ) ⊂ Ω. Let α ∈ T0(Ω) be a characteristic vector
of unit length at the origin 0, ∆α ⊂ Ω be the minimal disk such that
α ∈ T0(∆α). Let Lα : Cn → Cα be the Euclidean orthogonal projection,
which projects Ω onto ∆α. We identify Cα isometrically with C and hence
∆α with ∆. We claim that R(Ñ) ⊂ Ω. Denote by τ : Ñ → N the canonical
projection. For any bounded holomorphic function θ on Ñ consider the
function ψθ : N → R defined by ψθ(q) = sup{|θ(p)| : τ(p) = q} From
Cauchy estimates ψθ is continuous. Since it is obviously plurisubharmonic
and N is compact, ψθ is a constant function. Applying this now to the
function θα := Lα ◦ R we conclude that ψθα must be identically equal to
1, since ψθα(p) = 1 for any p ∈ f(X). Taking all possible characteristic
vector α of unit length at 0 one concludes readily that R(Ñ) ⊂ Ω, as can
be seen for instance from the Polydisk Theorem. It remains to show that
R(Ñ) ∩ ∂Ω = ∅. Identifying Ω as an open subset of T0(Ω), we have Ω =
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{η ∈ T0(Ω) : ∥η∥κ ≤ 1} where κ denotes the Carathéodory metric on Ω. If
R(Ñ)∩ ∂Ω ̸= ∅, then the plurisubharmonic function φ(w) = ∥R(w)∥κ on Ñ
attains its maximum value 1, and must therefore be identically equal to 1,
so that R(Ñ) ⊂ ∂Ω. But this contradicts with the fact that R(p) ∈ Ω for
any p ∈ F (Ω), and proves R(Ñ) ⊂ Ω, as desired.

Using f∗ : Γ
∼=−→ Γ′ we identify Γ with Γ′. For every γ ∈ Γ and any

p ∈ F (Ω), p = F (x), we have R(γ(p)) = γ(R(p)) = γ(x) by definition.
Consider now the vector-valued holomorphic map Tγ : Ñ → Cn given by
Tγ = R(γ(p))−γ(R(p)). Then Tγ vanishes identically on F (Ω). Considering

the plurisubharmonic function ∥Tγ∥ on Ñ and descending to N by taking

suprema over fibers of τ : Ñ → N we conclude as in the above that Tγ
vanishes identically on Ñ , i.e., we have the identity R ◦ γ ≡ γ ◦ R on all
of Ñ . It follows that the holomorphic mapping R : Ñ → Ω descends to
ρ : N → X. Since R ◦ F ≡ idΩ we conclude that ρ ◦ f ≡ idX , proving
Theorem 1 in the case where Ω is irreducible. For the general case where Ω
may be reducible it suffices to consider pull-backs of bounded holomorphic
functions which are nonconstant on irreducible factor subdomains of Ω and
the proof follows verbatim .

For the proof of the Isomorphism Theorem we proceed now to justify
the same line of argument by first proving the constancy of analogous func-
tions ψθ. This will be demonstrated by integrating by part on complete
Kähler manifolds, for which purpose we will pass to the hull of holomor-
phy of D and make use of complete Kähler-Einstein metrics as explained in
§2. A further argument, again related to the vanishing of certain bounded
plurisubharmonic functions, will be needed to show that the holomorphic fi-
bration obtained is trivial. For the proof of the Isomorphism Theorem along
this line of thoughts we will need

Lemma 6.12. Let (Z, ω) be an s-dimensional complete Kähler manifold
of finite volume, and u be a uniformly Lipschitz bounded plurisubharmonic
function on Z. Then, u is a constant function.

Proof. Fix a base point z0 ∈ Z. For R > 0 denote by BR the geodesic
ball on (Z, ω) of radius R centred at z0. There exists a smooth nonnegative
function ρR on Z, 0 ≤ ρR ≤ 1, such that ρ ≡ 1 on B R , ρ ≡ 0 outside BR+1,
and such that ∥dρR | ≤ 2

R . By Stokes’ Theorem, we have

0 =

∫
Z

√
−1d(ρRu) ∧ ∂u ∧ ωs−1 +

∫
Z
ρR

√
−1u∂∂u ∧ ωs−1 . (1)
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Here
√
−1∂∂u ≥ 0 in the sense of currents, hence it has coefficients which are

complex measures when expressed in terms of local holomorphic coordinates,
and

√
−1u∂∂u is well-defined since u is a bounded function.∫

BR

√
−1∂u ∧ ∂u ∧ ωs−1 ≤

∫
Z
ρR

√
−1∂u ∧ ∂u ∧ ωs−1

= −
∫
Z

√
−1u∂ρR ∧ ∂u ∧ ωs−1 −

∫
Z
ρR

√
−1u∂∂u ∧ ωs−1 . (2)

In terms of norms on (Z, ω), ∥du∥ is by assumption uniformly bounded.
Furthermore, ∥dρR∥ ≤ 2

R , and its support is contained in Z − BR, so
that the second last term of (2), up to a fixed constant, is bounded by
Volume(Z−BR, ω), which decreases to 0 as R→ ∞ since Volume(Z, ω) <∞
by assumption. On the other hand the last integral is nonnegative since
u ≥ 0 and u is plurisubharmonic. Fix any R0 > 0. It follows readily that
for any R > R0,∫

BR0

∥∂u∥2 ≤
∫
BR

∥∂u∥2 → 0 as R→ ∞ .

As a consequence ∂u ≡ 0, so that u ≡ C for some constant C, as desired.

We are now ready to prove the main application of the Extension The-
orem (Theorem 1.1), as follows.

Proof. (The Isomorphism Theorem) Here and in what follows by the in-
trinsic measure we will always mean the measure given by the Kobayashi-
Royden volume form. The starting point is the Fibration Theorem (Theorem
6.1), which was stated and proved only for the case where X = Ω/Γ and
N = Ñ/Γ′ are both compact. We observe first of all that the analogue of
Theorem 6.1 also holds in the more general case where Γ ⊂ Aut (Ω) is only
assumed to be a torsion-free lattice, and N is assumed to be compactifiable,
i.e., N is biholomorphic to a Zariski open subset of some compact complex
manifold N . From the proof of Theorem 6.1 what is needed is the con-
stancy of certain bounded continuous plurisubharmonic functions ψ. But
the hypothesis that N is compactifiable is sufficient for that purpose, by
Riemann extension of bounded plurisubharmonic functions across the sub-
variety A := N −N ⊂ N , and the Maximum Principle for plurisubharmonic
functions can be applied to the extended plurisubharmonic functions on the
compact complex manifold N to give the needed generalization of Theorem
6.1, yielding a holomorphic fibration ρ : N → X such that ρ ◦ f ≡ idX .
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By Proposition 6.10, we can ‘complete’ D to a bounded domain of holo-
morphy D̂ and extend Γ′ to a torsion-free discrete group of automorphisms
Γ̂′, such that N̂ = D̂/Γ̂′ is of finite intrinsic measure. By Corollary 6.11,
N̂ carries a unique Kähler-Einstein metric gKE of constant Ricci curvature
−(n + 1), n = dim(N). Denote by ωKE the Kähler form of gKE . By in-

variance gKE and ωKE descend to N̂ , and we use the same notations on N̂ .
By the Comparison Lemma (Lemma 6.6), the Kähler-Einstein volume form
on N̂ is bounded by a constant multiple of the Kobayashi-Royden volume
form, so that (N̂ , ωKE ) is also of finite volume. We may consider the holo-

morphic map f : X → N to have image in N̂ . Applying the Extension

Theorem (Theorem 1.1), we can extend the inverse map i : F (Ω)
∼=−→ Ω

to R̂ : D̂ → Cn as a bounded holomorphic map. We claim, in analogy to
the proof of the Fibration Theorem, that R̂(D̂) ⊂ Ω. The proof there relies
on showing that the bounded plurisubharmonic function ψθ is a constant.
From the construction, dψθ is uniformly bounded with respect to the in-
duced Carathéodory metric κ on N̂ . By the Comparison Lemma (Lemma
6.6), gKE dominates a constant multiple of κ, so that ∥dψθ∥gKE

is uniformly

bounded on N̂ (cf. Eqn (1) below for details in an analogous situation).
By Lemma 6.12 it follows that ψθ is a constant, so that R̂(D̂) ⊂ Ω. The
same argument applied to the bounded vector-valued holomorphic functions
Tγ = R̂ ◦ γ − γ ◦ R̂ yields the equivariance of R̂ under Γ. As a consequence,
the analogue of the Fibration Theorem remains valid, i.e., there exists a
holomorphic map ρ : N̂ → X such that f ◦ ρ ≡ idX . To complete the proof
of the Isomorphism Theorem it remains to show that f : X → N is an
open embedding. Knowing this, we will have ρ ◦ f ≡ id

N̂
by the identity

theorem, so that f maps X biholomorphically onto N̂ . But, by hypothesis
f(X) ⊂ N , so that N̂ = N and we will have established that f : X → N is
a biholomorphism.

We proceed to prove that f : X → N ⊂ N̂ is an open embedding.
Suppose otherwise. Then, n = dim(N) > dim(X) := m and the fibers
ρ−1(x) of ρ̂ : N̂ → X are positive-dimensional. Let x0 ∈ X be a regular
value of ρ̂ : N̂ → X, and L ⊂ ρ̂−1(x0) be a connected component, dim(L) =
n −m > 0. We claim that L lifts in a univalent way to D̂. To this end let
x̃0 ∈ Ω such that π(x̃0) = x0. and L̃ ⊂ D̂ be a connected component of
R̂−1(x̃0), such that τ(L̃) = L for the covering map τ : D̂ → N̂ . Suppose
γ ∈ Γ acts as a covering transformation on D̂ such that γ(L̃) = L̃. By the
Γ-equivariance of R̂ we have R̂(γ(p)) = γ(R̂(p)). Applying this to p ∈ L̃,
R̂(γ(p)) = R̂(p), so that γ(R̂(p)) = R̂(p), implying that γ acts as the identity
map on Ω since Γ ⊂ Aut(Ω) is torsion-free. This means precisely that τ |

L̃
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maps L̃ bijectively onto L, as claimed.
Recall that gKE is the complete Kähler-Einstein metric on N̂ of constant

Ricci curvature −(n+1), ωKE is its Kähler form. From the liftings L̃ we are
going to derive a contradiction. Let σ be a bounded holomorphic function on
the bounded domain D̂ such that σ|

L̃
is not identically a constant. Then,

u := |σ|2 gives a nonnegative plurisubharmonic function on L̃ ∼= L. If
we know that (L, ωKE |L) is of finite volume, then Lemma 6.10 applies to

yield a contradiction. We only know that (N̂ , ωKE ) is of finite volume. Let

again x0 ∈ X be a regular value of ρ : N̂ → X, q0 := f(x0). Let V
be a simply connected open neighborhood of x0 in X. For x ∈ V denote
by Lq ⊂ ρ̂−1(x) ⊂ N̂ the connected component of ρ̂−1(x) containing q :=

f(x). Since V is simply connected there is an open subset Ṽ ⊂ Ω such
that π

∣∣
Ṽ

: Ṽ → X maps Ṽ bijectively onto V for the universal covering

map π : Ω → X. For x ∈ V denote by x̃ ∈ Ṽ the unique point such
that π(x̃) = x and write L̃q ⊂ Ω for the irreducible component of π−1(Lq)

containing x̃. For almost all x ∈ V , x is a regular value of ρ : Ñ → X,
and Lq ⊂ Ñ , q = f(x), is a complex submanifold of Ñ of dimension equal
to dim(N) − dim(X) = n −m. For a singular value x, it remains the case
that dim(Lq) = n−m, but Lq may have singularities. The arguments in the

preceding paragraph remain valid to show that τ
∣∣
L̃q

maps L̃q bijectively onto

Lq. Let W ⊂ N̂ be the union of L̃q. Let σ now be a bounded holomorphic

function on the bounded domain D̂ such that σ
∣∣
L̃q0

is not identically a

constant. Since τ
∣∣
W̃

: W̃ → N̂ maps W̃ bijectively onto W we may regard
σ is a bounded holomorphic function on W . Write u := |σ|2. Then, u is a
nonnegative bounded plurisubharmonic function on W . Recall that κ is the
induced Carathéodory metric on N̂ = D̂/Γ′. By the Comparison Lemma
(Lemma 6.6), gKE ≥ Const. × κ. Since ∂u = σ∂σ and σ is bounded, we
have

∥∂u(y)∥gKE ≤ Const.× ∥∂σ(y)∥gKE

= Const.× sup
{
|∂σ(η)| : η ∈ Ty(D̂), ∥η∥gKE ≤ 1

}
≤ Const.′ × sup

{
|∂σ(η)| : η ∈ Ty(D̂), ∥η∥κ ≤ 1

}
<∞ ,

where the last inequality follows from the definition of the Carathéodory
metric. Denote by Rρ ⊂ f(V ) the subset of all q = f(x), where x ∈ V

is a regular value of ρ. Consider the fibration R̂ : D̂ → Ω. Then, the
Carathéodory metric κ

D̂
on D̂ dominates the pull-back of the Carathéodory

32



metric κΩ on Ω. By the Comparison Lemma, the Kähler-Einstein metric
gKE on D̂ dominates a constant multiple of the Carathéodory metric κ

D̂
on

D̂, so that
gKE ≥ Const.× R̂∗κΩ .

Descend to N̂ and consider the fibration ρ|W : W → V . In what follows
we impose the condition that V b X and denote by dλ the restriction of a
smooth volume form on X to V . From (1) it follows

ωn
KE ≥ (Const.× ρ∗dλ) ∧ ωn−m

KE .

By Fubini’s Theorem we conclude from the estimates that∫
q∈Rρ

Volume(Lq, ωKE

∣∣
Lq
)dλ(q) ≤ Const.×Volume(W,ωKE)

≤ Const.×Volume(N̂ , ωKE) <∞ ,

so that q ∈ Rρ and Volume(Lq, ωKE |Lq) <∞ for almost all q ∈ V . Applying
Lemma 6.6 to a regular fiber Lq with q sufficiently to q0, Volume(Lq, ωKE |Lq) <
∞ and to the nonconstant plurisubharmonic function u = |σ|2 on Lq we ob-
tain a contradiction to Lemma 6.12, proving by contradiction that f : X →
N is an open embedding, with which we have completed the proof of the
Isomorphism Theorem (Theorem 6.2).

We have the following variation of Theorem 6.2 when the fundamental
groups of X and N are only assumed to be isomorphic as abstract groups.

Theorem 6.13. (Variation of the Isomorphism Theorem) Suppose in the

statement of Theorem 6.2 in place of assuming that f∗ : Γ
∼=−→ Γ′ we assume

instead that Γ ∼= Γ′ as abstract groups and that f : X → N is nonconstant.
Then, f : X → N is a biholomorphism.

Proof. Fix an isomorphism between Γ and Γ′ as abstract groups and hence
identify Γ′ with Γ. f∗ is thus regarded as a group endomorphism of Γ. Let
G = Aut0(Ω) be the identity component of the automorphism group of Ω.
Replacing Γ (and hence Γ′) by a subgroup of finite index we may assume
that Γ ⊂ G. Since G is semisimple, connected and of real rank ≥ 2, and
Γ ⊂ G is an irreducible lattice, by the Margulis Superrigidity Theorem [7],
either f∗(Γ) is finite, or else f∗ : Γ → Γ extends to a group automorphism
φ : G → G. In the former case we would have a lifting X to the covering
domain D of N , which would force f to be constant by the Maximum
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Principle, since the Satake compactification of X is obtained by adding a
variety of dimension ≤ dim(X) − 2. In other words, the nonconstancy of

f forces f∗ : Γ
∼=−→ Γ to extend to a group automorphism φ : G → G.

In particular, f∗ is injective. With respect to a fixed Haar measure on
the semsimiple Lie group G, which is invariant under the automorphism
φ, Volume(G/Γ) must agree with Volume(G/f∗(Γ)). Since f∗(Γ) ⊂ Γ, it

follows that f∗(Γ) = Γ, so that f∗ : Γ
∼=−→ Γ ∼= Γ′, and we are back to the

original formulation of the the Isomorphism Theorem.
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