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ABSTRACT. In this paper we study the rigidity of proper holomorphic maps f: Q — Q' between
irreducible bounded symmetric domains €2 and € with small rank differences: 2 < rank(Q)') <
2rank(2) — 1. More precisely, if either  and €’ of the same type or Q is of type III and @’ is of
type I, then up to automorphisms, f is of the form f =120 F, where F' = F; x Fy: Q — Q] x Q).
Here Q}, Q) are bounded symmetric domains, the map F;: Q — Qf is a standard embedding,
Fy, : Q — Q) and : Q) x Q) — Q' is a totally geodesic holomorphic isometric embedding.
Moreover we show that, under the rank condition above, there exists no proper holomorphic map
f:Q—Qif Qis of type I and Q' is of type III, or  is of type IT and €' is either of type I or III.
By considering boundary values of proper holomorphic maps on maximal boundary components of
), we construct rational maps between moduli spaces of subgrassmannians of compact duals of 2
and 2, and induced CR maps between CR hypersurfaces of mixed signature, thereby forcing the
moduli map to satisfy strong local differential-geometric constraints (or that such moduli maps do
not exist), and complete the proofs from rigidity results on geometric substructures modeled on
certain admissible pairs of rational homogeneous spaces of Picard number 1.

1. INTRODUCTION

In this paper, we are concerned with the rigidity of proper holomorphic maps between irreducible
bounded symmetric domains when differences between the ranks of the domains are small.

A map between topological spaces is said to be proper if the pre-images of compact subsets are
compact. If the spaces are bounded domains in Euclidean spaces and the map extends continuously
to the boundary, the properness of the map is equivalent to the boundary being mapped to the
boundary. Hence if the domains have special boundary structures, the map is expected to have a
certain rigidity. In the case of bounded symmetric domains in their standard realizations, which
are one of the most studied geometric objects since Cartan introduced them in his celebrated
dissertation, the structure of their boundaries was extensively studied by Wolf ([W69, WT2]).

The study of rigidity of proper holomorphic maps between bounded symmetric domains started
with Poincaré ([P07]), who discovered that any biholomorphic map between two connected open
pieces of the the unit sphere in C? is a restriction of (the extension to B2 of) an automorphism of
the 2-dimensional unit ball B?. Later, Alexander [A74] and Henkin-Tumanov [TuK82] generalized
his result to higher dimensional unit balls and higher rank irreducible bounded symmetric domains
respectively. For unit balls of different dimensions, proper holomorphic maps have been studied
thoroughly by many mathematicians: Cima—Suffridge [CS90], Faran [F86], Forstneric [F86, [F89],
Globevnik [G87], Huang [Hu99, Hu03|], Huang-Ji [HuJOI], Huang—Ji-Xu [HuJX06|], Stensgnes
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[St96], D’Angelo [D88al, ID88bL [DI1], (D03, D’Angelo-Kos-Riehl ([DKR03]) and D’Angelo-Lebl
[DL09, DLIE).

In the case of bounded symmetric domains, Tsai [Ts93] showed that if f: Q — Q' is a proper
holomorphic map between bounded symmetric domains €2 and €’ such that € is irreducible and
rank(£2) > rank()> 2, then rank(2) = rank(€’) and f is a totally geodesic isometric embedding,
resolving in the affirmative a conjecture of Mok [M89, end of Chapter 6]. The proofs in Tsai ([Ts93]
are based on the method of Mok-Tsai [MT92] on taking radial limits on A x ', where Q' is a
maximal characteristic subdomain of €2, in the disk factor A to yield boundary maps defined on
maximal boundary faces, and on the idea of Hermitian metric rigidity of [M87] [M89]. For proper
holomorphic maps with rank(£2) < rank(€’) we refer the readers to Chan [C20l [C21], Faran [F86],
Henkin-Novikov [HN84], Kim-Zaitsev [KZ13| [KZ15], Mok [M08c], Mok-Ng-Tu [MNT10], Ng [N13|
N15a, IN15b], Seo [S15] [S16, [S18] and Tu [Tu02al, [Tu02b]. In particular, in [KZ15], Kim-Zaitsev
showed that under the assumption that p > ¢ > 2,9’ < 2p — 1,¢ < p, any proper holomorphic
map f: D! ~— D! , which extends smoothly to a neighborhood of a smooth boundary point

Z (g h(g) ) (1.1)

must necessarily be of the form
where h(z) is an arbitrary holomorphic matrix-valued map satisfying
Iy—q—h(2)*h(z) > 0 for any z € D! .

Here, D!  denotes a bounded symmetric domain of type I (see (2.9)). Recently Chan [C21] gen-
eralized their result to type I domains by removing the smoothness assumption on the map. Our
first goal is to generalize the results of Kim—Zaitsev and Chan to cases in which €2 and €’ are of
the same type or € is of type III and € is of type I without requiring the existence of a smooth
extension to the boundary.

For each Hermitian symmetric space of the compact type, there exist special subspaces which
are called characteristic subspaces. They are defined using Lie algebras in [MT92] Definition 1.4.2],
and we also provide their detailed description in Section

Definition 1.1. Let X and X’ be Hermitian symmetric spaces of the compact type. A holomorphic
map [ : X — X' is called a standard embedding if there exists a characteristic subspace X" C X'
with rank(X") = rank(X) such that f(X) C X” and f: X — X" is a totally geodesic isometric
embedding with respect to (any choice of) the canonical Ké&hler-Einstein metric of X” up to
normalizing constants. For a nonempty connected open set U C X, a holomorphic map f: U — X’
is called a standard embedding if f extends to X as a standard embedding.

It is worth mentioning that the canonical Ké&hler-Einstein metrics on X” are induced from a
Kéhler-Einstein metric on X'.

Theorem 1.2. Let Q and Q) be irreducible bounded symmetric domains of rank q and ¢', respec-
tively. Suppose
2<q <2¢—1.
Suppose further that either (1) Q and Q) are of the same type or (2) QU is of type III and V' is of
type I. Then, up to automorphisms of 0 and €', every proper holomorphic map f: Q — ' is of
the form f =10 F, where
F:F1XFQZQ—>Q/1XQ/2,
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Q) and QY are bounded symmetric domains, Fy: Q — Q) is a standard embedding, Fy : Q@ — €
is a holomorphic mapping, and 1 : ) x Q5 — Q' is a holomorphic totally geodesic embedding of
a bounded symmetric domain €Y} x ), into Q' with respect to canonical Kahler-Einstein metrics.
Here, €Y, is allowed to be a point. As a consequence, every proper holomorphic map f : Q — ¥,
f =10F, is a holomorphic totally geodesic isometric embedding with respect to Kobayashi metrics.

We remark that in the case of type I domains, our result (which supersedes |[C21]) is optimal.
In fact, when ¢’ = 2q — 1 there exists by Seo [S15] a proper holomorphic map called a generalized
Whitney map from D! to D3, ,,; which is not equivalent to (L.1)). Note also that for Q and
Y of type IV, both bounded symmetric domains are of rank 2 and rigidity follows from [T's93].
In the case of exceptional domains DV and DV’ the theorem concerns only proper holomorphic
self-maps which are again necessarily automorphisms by [Ts93] (or already from the method of
[TuK82]).

Theorem 1.3. There exists no proper holomorphic map from  to €, if one of the following
holds:

Y S _ I
(1) Q= D, withq<p, =D, andq <2q—1.

(2) Q= D}, & = D!, ., withq <p' or D" and 2 < ¢’ <2[n/2] — 1.

The basic strategy for the proofs of Theorem [1.2] and Theorem [1.3]is to generalize a strategy
used in the works of Mok-Tsai [MT92] and Tsai [Ts93] which consists of two main steps. In the first
step, it was shown that any proper holomorphic map between bounded symmetric domains maps
boundary components into boundary components. This result was then used in the second step
under the assumption that the rank of the target domain is smaller than or equal to that of the
source domain. Under the latter assumption, a moduli map was constructed from the moduli space
of maximal characteristic symmetric subdomains to that of characteristic symmetric subdomains
of a fixed rank in the target domain, and the moduli map was proven to admit a rational extension
between moduli spaces of characteristic symmetric subspaces.

If we assume that the difference between the rank of the target domain ¢’ and that of the
source domain ¢ is positive, then for each rank 1 < r < ¢ we need to construct a moduli map
f2: D.(Q) — F;,(9) between the moduli spaces of subgrassmannians and show that this map
also preserves the subgrassmannians Z and @], (Lemma , Lemma . It is worth pointing
out that there exists a one-to-one correspondence r — i, between the indices of the moduli spaces
of the source and target domains (Lemma , so that there exists r such that ¢, = ¢,_; + 1 in the
case of type-I and type-III Grassmannians, and i, = i,_1 + 2 in the case of type-II Grassmannians,
and our rank condition is necessary to guarantee that r exists. The existence of r is crucial to
establish the fact that some moduli map associated with the proper holomorphic map f: € —
is a trivial embedding, from which the form of f as described in Theorem can be recovered.

The moduli map f? is holomorphic if € is of type II or type III for all . On the other hand, if
Q is of type I, then f? for the case when 4, = 4,_; + 1 is either holomorphic or anti-holomorphic.
For instance, if 2 = Q' = lej,p, then the moduli map for the identity map is holomorphic while
the moduli map of transpose map defined by

I T I
zeD,,— 2" €D,,
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is anti-holomorphic. Here, Z7 denotes the transpose matrix of Z. If a moduli map happens to be
anti-holomorphic, we use the conjugate complex structure of the source moduli space.

After implementing the aforementioned strategy, for the completion of our proofs we will make
use of rigidity phenomena for CR embeddings (as in [Ki21]) in an essential way applied to certain
CR hypersurfaces in moduli spaces of subgrassmannians, and rigidity results concerning geometric
structures and substructures. Our lines of argumentation concord with the perspective put forth
in Mok [M16] of applying the theory of geometric structures and substructures modeled on va-
rieties of minimal rational tangents to the study of proper holomorphic maps between bounded
symmetric domains, and, in the special case of proper holomorphic maps from type III domains
to type I domains, a novel element in our proof is the establishment of the rigidity phenomenon
for admissible pairs of rational homogeneous manifolds not of the sub-diagram type as initiated
in [M19]. In the latter case our proof relies on the solution of the Recognition Problem for sym-
plectic Grassmannians of Hwang-Li [HwL21]. Both the aforementioned rigidity phenomenon and
the Recognition Problem will be formulated in the framework of the geometric theory of uniruled
projective manifolds X equipped with minimal rational components K, and we will need the basics
of the theory as is given in Hwang-Mok [HwM99] and Mok [MO8b], especially the notion of the
variety of minimal rational tangents (VMRT) at a general point of (X, K) first defined in Hwang-
Mok [HwM9g], and of the theory of sub-VMRT structures as given in Mok [M16] and Mok-Zhang
IMZ19].

Our main technical result is presented in Section [4| and it deals with the rigidity of holomorphic
maps which respect subgrassmannians.

Definition 1.4. Let U C D,(X) be a nonempty connected open subset. A holomorphic map
H:U — D,/(X') is said to respect subgrassmannians if for each 7 € D,(X) and each connected
component U® of UN Z,, a € A, there exists 7/(«) € D,»(X') such that

(1) H(Ug) C ZT/(a) and
(2) H|ye extends to a standard embedding from Z; to Z(q).

Here, for the definition of D, (X) and Z., see (2.4), (2.6), (2.8)), Definition [3.1] and Definition 3.2]

Under the assumptions of Theorem and the additional condition that A maps a CR sub-
manifold %,(2) to X, ('), Proposition |5.3| says that the map is a trivial embedding. Here 3,.(€2)
and ¥; (') are canonically defined CR submanifolds in D,(X) and D; (X’) respectively. This
generalizes a result of the first author [Ki21] (cf. [N12]) on the rigidity of CR embeddings between
SU (¢, m)-orbits in the Grassmannian of ¢-planes in CP*? where m = p + q — /.

The proof of Proposition [5.3| will be given in several steps. First, we will show that the 1-jet of H
coincides with that of a trivial embedding and that H maps connected open subsets of projective
lines into projective lines (Lemma . We remark that if X is of type I or type II, then for
any projective line L C D,.(X), there exists a subgrassmannian Z, such that L C Z.. Since
H respects subgrassmannians, H sends (open subsets of) projective lines into projective lines.
Type III domains require special attention (Lemma . If the map is defined between domains
of the same type, in view of Theorem 1.1 and Proposition 3.4 of [HoM10] and Lemma the
proof is complete. Theorem 1.2 of [HoMI10] is a generalization of Cartan-Fubini type extension
results obtained by Hwang-Mok in [HwMO1], to the situation of non-equidimensional holomorphic
mappings modeled on pairs (X,, X) of the subdiagram type. We refer readers to [KoOS&1, HwMO1l,
HwMO04|, M08al, HoM 10l [HoN21| for developments in this direction.
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On the other hand, if the source domain is of type III and the target domain is of type I, then
we need to make use of [M19, Section 6]. In [M19], the second author gave sufficient conditions
for the rigidity of an admissible pair (X,, X) which is not of the subdiagram type. As a conse-
quence, he used this result to prove that the admissible pair (SGr(n,C*), Gr(n,C?*")) is rigid. We
partially generalize the latter result to the admissible pair (SGr(q, C*"), Gr(q,C*)), 2 < q¢ < n,
under the additional assumption (#) that the support S C Gr(q, C*") of a sub-VMRT structure
(S, €x N PTs) modeled on (X, X’) is the image of a VMRT-respecting holomorphic embedding
H from a connected open subset of SGr(g, C*") into Gr(gq, C**) which transforms any connected
open subset of a minimal rational curve into a minimal rational curve, in which case it is known
that the holomorphic embedding admits a rational extension (cf. [HoM10]). Alternatively, ratio-
nal extension of H also follows from the Hartogs phenomenon as applied in Mok-Tsai [MT92],
an argument which we have made use of in the current article to prove rational extension in
Lemma [6.2 and Lemma [6.5]

It is possible, along the line of thoughts of [M19], to entirely remove the assumption (£) (cf.
Remark (a)), but we will refrain from proving the (full) rigidity of the admissible pair
(SGr(q,C*"), Gr(q,C*")) as that is not needed for the current article. For the notion of admissible
pairs and the rigidity of the admissible pairs of the subdiagram type, see [MZ19].

It is worth noting that the analogues of Theorem [1.2] and Theorem [1.3]involving Q2 of type I or
type III and € of type II are not covered in the current article and would be a natural continuation
to our work.

The organization of the current article is as follows. In Section [2| we describe the moduli spaces
D,(X) and D, (X) of characteristic subspaces in X. In Section [3, we present the subgrassmannians
of D,(X) and D,(X). Then we explain the CR structure of the unique closed orbit ¥, (X) in
D,.(X). In Section |5, we investigate the rigidity of subgrassmannian respecting holomorphic maps
between D,(X) and D,/(X’). For the treatment of this topic the cases where X and X' are of
the same type I, II or III leads us eventually to the rigidity phenomenon for admissible pairs
of the subdiagram type of irreducible compact Hermitian symmetric spaces, which was already
established in [HoMI10] (in the more general context of rational homogeneous spaces), whereas
the case where X is a Lagrangian Grassmannian LGr, (i.e., X is of type III) leads to a rigidity
problem for admissible pairs of non-subdiagram type. In order to proceed with Section [5|in a way
that incorporate all pairs (X, X') being considered in the article, we first consider in Section
the rigidity phenomenon for the pair (SGr(q, C**), Gr(q,C**)). Section [5| then consists of several
lemmas to prove Proposition [5.3] which is the main technical result in this paper. In Section [0}, we
define moduli maps f# (resp. f?) between D,(X) (resp. D, (X)) and D,»(X") (resp. D,.(X")) which
are induced by a proper holomorphic map between  and €. In Section |7}, we show that f’ is a
subgrassmannian respecting holomorphic map and extends to a standard holomorphic embedding
for some r. Finally in Section [§ we prove Theorem [I.2] and In Section [9] we prove some results
from the method of moving frames that have been used in the article.
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2. PRELIMINARIES

2.1. Hermitian symmetric spaces. Let (X,,g,) be an irreducible Hermitian symmetric space
of the noncompact type and denote by G, the identity component of its automorphism group of
biholomorphic self-maps (which are necessarily isometries with respect to g,), which is a Kéhler-
Einstein metric of negative Ricci curvature. Let K C GG, be a maximal compact subgroup, so that
X, = G,/K as ahomogeneous space and K C G, is the isotropy subgroup at 0 := eK, e € G, being
the identity element. The structure of X, = G,/K corresponds to a simple orthogonal symmetric
Lie algebra (g,¢;60) (cf. Helgason [Hel78, Chapter IV, Proposition 3.5]) where 6 € End(g,) is a
Lie algebra automorphism such that € C gq is precisely the subset of elements fixed by 6 (which
is the differential at e € g, of an inner automorphism 7 of G,, 7(g) = s~ 'gs for some element s
belonging to the center Z(K) = S' of K, cf. e.g., Mok [M89, p.49]).

In what follows, for a Lie group denoted by a Roman letter we denote the associated Lie algebra
by the corresponding Gothic letter, and vice versa. Write g, = €@ m for the Cartan decomposition
of g, at o which is the eigenspace decomposition of 8 on g, corresponding to the eigenvalues 1 and
—1 respectively. There is an element z in the center 3 of € such that ad(z)|y is the almost complex
structure at o. We write g for the complexification of g,, and G for the complexification of G,
so that G, < G canonically. We have the Harish-Chandra decomposition g = m* @ €€ @ m~
(where for a real vector space V we denote by VC the complexification V ®g C), which is the
eigenspace decomposition for ad(z), extended by complex linearity as an element of Endc(g),
corresponding to the eigenvalues v/—1,0 and —/—1 respectively. Writing p :=t¢@m~ Cg,pC g
is a parabolic subalgebra, and G/P is the presentation as a complex homogeneous space of a
Hermitian symmetric space X of the compact type dual to X,. The canonical embedding G, — G
induces a holomorphic map X, = G,/K — G/P = X, which is the Borel embedding realizing
X, as an open subset of X. At 0 = eK € G,/K — G/P write m* := T,(X,) = T,(X). The
Harish-Chandra embedding theorem gives a holomorphic embedding 7 : m™ — X onto a Zariski
open subset in X such that  := 771(X,) € m™ is a bounded symmetric domain on the Euclidean
space m™ = C", where n = dimc(X) (cf.[W72]).

Write g. = €@ v/—1m C g. Then, g, is the Lie algebra of a compact Lie subgroup G. C G. The
Lie groups G. and G, are respectively a compact real form and a noncompact real form of the
simple complex Lie group G (with a trivial center), such that G.N G, = K. G. acts transitively
on X, and, extending 6 € End(g,) by complex linearity to g, g. is stable under 6, and (g., £;0) is
a simple orthogonal Lie algebra underlying X, := G./K as an irreducible Hermitian symmetric
space of the compact type. There is a G .-invariant Kahler-Einstein metric g. of positive Ricci
curvature such that ((X., gc), (Xo, go)) is a dual pair of irreducible Hermitian symmetric spaces of
the semisimple type. Moreover, g. = £ ® v/—1m C g is the Cartan decomposition of g.. In what
follows we will identify X, = G./K with X = G/P via the biholomorphism induced from the
inclusion G, C G.

Let h C g be a Cartan subalgebra lying inside €¢, and A := {ay, -+, a,} be a full set of simple

roots of g with respect to b, and ® be the set of all h-roots of g, so that g = b & <@¢e¢ g“"),
where g¥ C g is the (complex 1-dimensional) root space associated to the root ¢ € ®. (Here and
in what follows by a root we always mean an h-root in g, i.e., an element of ®.) There are the

standard notions of positive roots and negative roots, and of compact and noncompact roots in P,
so that, m € ® is called a positive root if and only if it is an integral combination nyaq +- - - +nsas,
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where each a4 is a nonnegative integer for 1 < k < s and (ay, -+, ;) # 0, and ¢ € ® is called a
compact root if and only if g C €%, otherwise ¢ is called a noncompact root. Two distinct roots
1, p2 € @ are said to be strongly orthogonal if and only if neither ¢; + @9 nor p; — ¢ is a root.

Note that the notation m™ has been given two interpretations: (a) as the holomorphic tangent
space T,X and (b) as a complex vector subspace of g in the Harish-Chandra decomposition
g =t om® =t ®m" ®m . Regard g as the Lie algebra of holomorphic vector fields on
X = G/P. If we identify u € T,(X) = m* with the holomorphic vector field v’ in m™ C g that
it corresponds to as a result of the two interpretations of m* as given above, the holomorphic
embedding 7 : m* — X is given by 7(u) = exp(u)(e) mod P € G/P = X.

Let II C ® be a maximal set of mutually strongly orthogonal positive noncompact roots. We
have |II| = rank(Q2) = ¢. Let A C II be nonempty, 1 < r :=|A| < ¢. In [MT92] the authors defined
a characteristic subspace X, , C X, which is a totally geodesic complex submanifold in (X,, g,)
passing through o € X, together with a characteristic subspace X, C X which is a totally geodesic
complex submanifold in (X, g.) such that Xy, C Xa. (Xp0, Xa) is a dual pair of irreducible
Hermitian symmetric spaces, and the inclusion X, , C X, is the Borel embedding. Moreover,
X, corresponds under the holomorphic embedding 7 : m*™ — X to 771<XA70) =: Qp C Q. By
[IMT92], Proposition 1.12], Qx C € is of the form Q, = m}{ N Q for the complex linear subspace
m} C mT identified with 7,(X,). By a case-by-case checking each X, (and hence each X, ,) is
an irreducible Hermitian symmetric space. We have rank(X,) = rank(X, ,) = [A| = 7.

From the Restricted Root Theorem it is well-known from Wolf [W72] (as given in [MT92,
Proposition 1.4.1]) that whenever A; and A, are of the same cardinality, there exists k¥ € K such
that Xy, = k(X4,) (hence also X, , = k(X4,.0)) - By a characteristic subspace of (X, g.) we mean
h(Xy) for some h € G. and for some A. From [MT92, Proposition 1.12] and [Ts93, Lemma 4.4]
characteristic subspaces of X are invariantly geodesic in the sense that v(X,) is totally geodesic
in (X, g.) for any v € G and an A. In particular, for a characteristic subspace Y C X passing
through 0o = eP € G/P = X and for v € M~ = exp(m™), 7Y C X is totally geodesic in
(X, g.) while T,(7Y) = T,(Y) (since m~ consists of holomorphic vector fields vanishing to the
order 2, hence dy(o) = idg,(x)), and it follows from uniqueness properties of totally geodesic
complex submanifolds that vY = Y. Moreover, by [MT92 loc. cit./, for any v € G such that
A:=~(Xy)Nmt £0, ACm' is a complex affine subspace.

By a characteristic subspace of (X,, g,) we mean h(Xy ,) for some h € G, and for some A, and
a characteristic subdomain € C Q is simply 77(Y,) for some characteristic subspace Y, C X,,.
For 1 < r < g we see from the Restricted Root Theorem that there is up to the action of G (resp.
G,) only one isomorphism class of characteristic subspaces Y C X (resp. Y, C X,) of rank r, thus
also only one isomorphism class of characteristic subdomains Q' C Q of rank r under the natural
action of GG, on €.

For 1 < r < g the complex Lie group G acts on the set €, of characteristic subspaces of X of
rank 7, hence €, admits the structure of a complex homogeneous manifold. From the definition,
G. C G already acts transitively on €,.. It follows that €, is compact, hence €, is a rational
homogeneous manifold given by €, = G/Q for some parabolic subgroup @ C G. Denote by D,
the moduli space of characteristic subdomains 2. C Q of rank r. By the description . =Y NQ
for some characteristic subspace Y C X of rank r it follows that ®, can be identified as an open
subset (in the complex topology) of €,, and it was proven in [MT92] by Oka’s characterization of



8 S.-Y. KIM, N. MOK, A. SEO

domains of holomorphy that every meromorphic function on ®, extends to a rational function on
¢,, an intermediate result essential for both [MT92] and [T's93].

Now suppose ' C Q is a characteristic subdomain. Write ' = h(€,) for some characteristic
subdomain Q) = 771(X,) € m} and for some h € G,. Recall that I = {m,--- 7} is a
maximal set of mutually strongly orthogonal positive noncompact roots. Consider Ay := IT— {¢1 }
for any element v, € II. A nonzero vector @ € g¥! is a minimal rational tangent in the sense that
a € Ty, for some minimal rational curve ¢, C X passing through o. Note that A, := ¢, N Q
is a minimal disk on Q. Write L := SU(1,1)/{£}. By [MT92, Proposition 1.7], there exists
an (L x Gy, ,)-equivariant holomorphic totally geodesic embedding of A x €2, into 2, written
here as 31 : A x Qp, — Q, where Gy, , C G, is a noncompact real form of G, C G, in which
the Lie algebra gy, of G, is the derived algebra of h + ®pl1/11 g”, where for p,ps € @, p1 L po
if and only if B(p;,p2) = 0 for the Killing form B(-,-) of g. Noting that ,, is irreducible, by
induction it follows that for any A, 0 # A C II, writing ¥ = {¢1,--- ,¢,} and A = IT — ¥, there
exists an (L?7" x Gy ,)-equivariant holomorphic totally geodesic embedding 8 : A?7" x §2, into €2,
where G , C G, is a noncompact real form of G C G, in which the Lie algebra ga of G is the
derived algebra of b + @pm ¢g”, p L W meaning p L 1 for all ©» € U. Note that 3 extends to a
holomorphic embedding, still to be denoted 3, of (P')4™" x X, into X (when we identify Q with
X,). In particular, § is defined and continuous on A4=" x {2,.

The topological boundary 0f2 of €2 decomposes into a disjoint union |, S, of G,-orbits S,, r =
0,...,q9— 1. To emphasize X or €2, we will occasionally write S, as S,.(X) or S,(£2) in the future.
Each S, is foliated by maximal complex manifolds called boundary components of €. For the
definition of boundary components, see [W72 Part I, 5. Boundary Components].

The boundary components of Q of rank r lying on S(A=" x Q,) are of the form S({a} x Q4),
where a € (0A)?7". The group G, acts transitively on the moduli space of boundary components
of Q of any fixed rank. Write By = B({(1,---,1)} x Q4). Then, for any boundary component
B C 09 of rank ¢ — r, there exist v € G, such that B = y(B;). Then yo f: (A" x Q) — Q is
an (L7" x Gy ,)-equivariant holomorphic totally geodesic embedding whose image contains B in
its topological closure, as described.

Write ¥ C € for the image of yo 5. Then, ¥ C (2 is a holomorphically embedded totally geodesic
copy of A" x Q, such that B C £. We note that such a complex submanifold ¥ C € is not
unique. In fact ¥ = v(X) plays the same role as ¥ for any v € G, belonging to the stabilizer
subgroup N C G, of B C S, C 09. (Since the moduli space €, is compact and the moduli
space of all ¥ = §(A9™" x Q4),0 := v o f as in the above, is easily checked to be noncompact,
N does not stabilize 3.) Noting that K = Aut,(Q2) acts transitively on the moduli space 9B,
of boundary components of rank r (cf. Wolf [W72 p. 287]), in the previous paragraph we may
choose v = k € K, in which case X C €2 passes through o € ). We observe that there is a unique
Y = (ko B)(AT x Q) C Q such that 0 € ¥ and B € X. To see this, it suffices to note that
the complex submanifold > C €2, being totally geodesic and passing through o € 2, is uniquely
determined by the holomorphic tangent space T,> C T,(), which is in turn determined by B C 5.
However, it can readily be checked that the set of all 2 := (ko8)({z} xQ4), k € K, z € AT thus
obtained does not exhaust all characteristic subdomains of rank r on ). The approach of studying
proper holomorphic maps in [MT92] and [Ts93] was to deduce properties on the restriction of
proper holomorphic maps to characteristic subdomains from properties of radial limits (thus the
role of the polydisk factor A9~") of proper holomorphic maps on boundary components, hence the
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necessity for introducing holomorphic embeddings of A?™" x ), accounting for all characteristic
subdomains.

2.2. Moduli spaces of Hermitian symmetric subspaces and characteristic subspaces.
Each irreducible Hermitian symmetric space is associated with a Dynkin diagram marked at a
single node, and any Hermitian symmetric subspace corresponding to a marked subdiagram of the
marked Dynkin diagram is termed a subspace of subdiagram type. In this subsection we describe
moduli spaces of certain Hermitian symmetric subspaces of subdiagram type and characteristic
subspaces in the irreducible Hermitian symmetric space of type I, II, III. We refer the reader to

[W69] and [W72, Part III] for more details.

(1)

Let X be the complex Grassmannian Gr(q,p) consisting of g-planes passing through the
origin in CP*49. Then G = SL(p + q,C)/tp+qlp+q, where pi,,, stands for the group of m-th
roots of unity, and I,,, stands for the m-by-m identity matrix, and for any A € SL(p+¢,C),
A acts on A7 (CPT9) by

A(wy A -+ ANwy) = Awy A -+ N Aw,, (2.1)
where wy,...,w, € CPT9. Taking wy,...,w, to be linearly independent and identifying
Gr(q, p) with its image in P (A7 (CP*)) under the Pliicker embedding, we have the induced

action of A € SL(p + q,C) on Gr(q,p). A subgrassmannian in Gr(q,p) is the set of all
elements x € Gr(q, p) such that

VicxCVy (2.2)

for given complex vector subspaces Vi, Vo € CPT9. Hence, for fixed positive integers a < b,
the moduli space of subgrassmannians with dim V; = a, dim V5 = b is the flag variety

Fla,b;CP) = {(Vi, Va) : {0} C Vi C Vo € €™, dim V; = a, dim V, = b}. (2.3)
Since Gr(p, q) is biholomorphic to Gr(q, p), without loss of generality we will assume from
now on ¢ < p, so that Gr(q, p) is of rank ¢. For (V1,V3) € F(a, b; C’*9) we denote the cor-

responding subgrassmannian by Xy, 1,). We denote the moduli space of subgrassmannians
where dimV); = ¢ —r, dimVo=p+rforr=1,...,q—1 by D.(X), ie.,

D (X)={(V1,Va) : {0} c Vi Cc Vo cCP* dim V) =q—r,dim Vo =p+r}. (2.4)

Let X be the orthogonal Grassmannian OGr, consisting of n-planes passing through

the origin in C?" isotropic with respect to a nondegenerate symmetric bilinear for-

m S, = IO {)" on C?". Note that ¢ := rank of OGr, = [%} In this case
G = SO(2n,C)/{£l,} and it acts on OGr, by (2.1). Consider a subgrassmannian

in OGr,, which is the set of all elements x € OGr,, such that
VcrcVt (2.5)

for a given isotropic complex vector subspace V C C?" with respect to S,, where V*
denotes the annihilator of V' with respect to Sy,. Let D,(X) and D, 1 (X) denote the moduli

spaces of such subgrassmannians in OGr,,, e, forr=1,...,q—1
D.(X) = {(V,V') e F(2(q—7r),2n — 2(q — 1); C*") : S,(V, V) = 0}
D, 1(X)={(V.V") € F2(g—r)+1,2n = 2(q — 1) = 1;C*") : $,(V. V) = 0}

Ty

(2.6)
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For (V,V*') € D(X) or D, 1 (X) we will denote the corresponding subgrassmannian by
Xy.

Let X be the Lagrangian Grassmannian LGTr, consisting of n-planes passing through the
origin in C** which are isotropic with respect to the nondegenerate antisymmetric bilinear

_OI % on C?". In this case G = Sp(n,C)/{*Is,} and it acts on LGr,

by (2.1). Consider a subgrassmannian in LGr, which is the set of all elements = € LGr,
such that

form J, =

VcrcVt (2.7)

for a given isotropic complex vector subspace V C C?* with dimV = n — r, where V*
denotes the annihilator with respect to .J,. Let D,(X) denote the moduli space of such
subgrassmannians in X = LGr,, i.e., forr=1,...,n—1

D(X)={(V,VY) e F(n—r,n+r;C*") : J,(V,V) =0} (2.8)
For (V,V+) € D,.(X) we will denote the corresponding subgrassmannian by Xy

Recall that for each boundary component B C S,, there exists a totally geodesic complex
submanifold > C 2 passing through the origin o € 2, a polydisk A?™", and a totally geodesic
holomorphic embedding € : A" x Qy — € such that B = e({t} x ) for some ¢t € (0A)?". For
each point z € AT ¢({z} x Qo) =: Q' C Q is a characteristic subdomain of €. In general each
characteristic subdomain is a bounded symmetric domain on a characteristic symmetric subspace
X' of (X, g.).

For the following description of the characteristic subdomains for each irreducible bounded
symmetric domain of types I, IT, and III, see [W72l, Part III] for further information.

(1)

Characteristic subspaces of rank 7 in Gr(q,p) are the subgrassmannians Xy, ;) with
dimV; = ¢ —r and dimV, = p+ 7 in (2.2) and hence the moduli space of them is

D, (X) given by (2).

. . I . .
The bounded symmetric domain D, , corresponding to Gr(q, p) is the set of g-planes

in CP*? on which the nondegenerate Hermitian form I,, = ( ()q _Oj. ) is positive def-
p

inite. Write M®(p,q) for the set of p x ¢ matrices with coefficients in C, and denote by
e1,..., ey o} the standard basis of CP™9. For Z € M®(p, q), denoting by v, 1 < k < g,
ptaq

the k-th column vector of Z as a vector in C? = Spanc{ei4y, ..., €p+q} we identify Z with
the ¢g-plane in CP™? spanned by {e, + vi : 1 < k < ¢}. Then we have
={ZeM"(p,q):I,—2°Z >0} (2.9)

where Z* denotes the conjugate transpose of Z. The characteristic subdomains of rank r

of D] , are of the form Xy, ;) N D! with (V4,V3) € D,(X).

Characterlstlc subspaces of OGr, of rank r are the subgrassmannians of the form

with dim V' = 2 [%] — 2r. Hence the moduli space of these subgrassmannians is D, (X )
The bounded symmetric domain corresponding to OGr,, is the set of n-planes in X on

which 1, ,, is positive definite. It is given by

DI'={ZeM nn):1,-2°Z>0,2=-2"}.
The characteristic subdomains of DI are of the form Xy N DI with (V, V1) € D.(X).
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(3) Characteristic subspaces of LGr, of rank r are of the form (2.7) with dimW = n —r.
Hence the moduli space of of these subgrassmannians is D, (X).
The bounded symmetric domain corresponding to LGr, is the set of n-planes in LGr,
on which I, , is positive definite. It is given by

DI ={ZeM“(nn):1,—2°2>0,2Z=2"%.
The characteristic subdomains of DI are of the form Xy N DI with (V,V+) € D,.(X).

Define
D, (Q):={c €D, (X): Qy:=X,NQ#0D},
where X, is the subgrassmannian of X corresponding to o € D,(X). We may consider D,(2) as

the moduli space of the characteristic subdomains of rank r. For each boundary orbit Sy with
k > r, define

D, (Sk) := {0 € D,(X): Q, := X, N S is a nonempty open set in X, }. (2.10)

Similarly, we define Dr’%(Q) and Dn%(Sk) for the type II domains. Then D,(Q2), D,(Sk) and
D %(Q), Dn%(Sk) are G,-orbits in D,(X) and Dr’%(X) such that D,.(Sg) C 9D, (£2) and Dn%(Sk) C

Ty

ID, 1 (92), respectively. For notational consistency, we define
Do(X) =X, Do(Q2) =, Do(Sk) = Sk-
Whenever necessary, we will denote by S,.(X) the boundary orbits of Q C X for a specific X.
By Section 10 of [W72], we obtain the following lemma.

Lemma 2.1. Let X = Gr(q,p). Then, D,.(S,) is parametrized by (q — r)-dimensional subspaces
of CP* jsotropic with respect to I, ,. More precisely, any o € D,(S,) is of the form o = (Vi,Va),
where Vy is a (¢ —r)-dimensional isotropic subspace of I, ,, Vs is the annihilator of Vi with respect
to I, , and vice versa.

Since one can embed OGr,, and LGr, into Gr(n,n) as totally geodesic complex submanifolds,
by Lemma [2.1] we conclude that D,(S,) is parametrized by (2[n/2] — 2r)-dimensional isotropic
spaces with respect to I, for X = OGr, and (n — r)-dimensional isotropic spaces with respect
to I, for X = LGry,.

2.3. Associated characteristic bundles. We refer the reader to [M89] as a general reference
for this subsection. For each o € D,(Q2), there exists a polydisk A" such that A?" x Q, is
a totally geodesic submanifold of 2. Let Gr(q — r,TQ2) be the Grassmannian bundle defined by
Upeq Gr(q — 1, 1,Q2). Define €977(Q) C Gr(q — 1, TS) to be the set of tangent spaces of such
A?"’s. Define the r-th associated characteristic bundle NS, (X) C Gr(n,,TX) (resp. NS,.(Q2) C
Gr(n,,TQ)) to be the collection of all the holomorphic tangent spaces to X, with ¢ € D,(X)
(resp. X, with o € D,.(2)), which is a holomorphic fiber bundle over X, where n, = dim(X,) for
o € D, (X). By [MT92], we obtain N'S,.(2) = N'S,.(2) |0 x 2. From [M89, p.249f.], NS,-1(Q)]o is a
Hermitian symmetric space of the compact type. More generally we have the following statement.

Here in the proof, for clarity we denote by [---] the point in a classifying space corresponding
to the object inside the square bracket.

Lemma 2.2. NST(X)‘O is a Hermitian symmetric space of the compact type.
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(1) Gr(q,p) : For a point [V] € X = Gr(q,p) = Gr(q, CP*?) we have T}y (Gr(q,p)) =
V* @ CPT4/V. Fix the base point 0 = [Vy] € Gr(g,p) and identify ToX with M(p, q).
Denote by K€ the image of GL(¢q,C) x GL(p,C) in GL(Vy ® CP™)/V, where (A, B) €
GL(q,C) x GL(p,C) acts on Z € M(p, q) by (A, B)(Z) = BZA™!, which descends to the
isotropy action of K€ on Ty X. By definition N'S,.(Q)]o C Gr(n,, To()), n, =r(p—q+7).
The isotropy action of K€ on Ty X induces a KC-action on Gr(r(p — ¢+ r),Tp(f2)), and
K€ acts transitively on N'S,.(Q)]o. When o € D,(X) corresponds to X, C Gr(q,p) and
X, passes through 0, we have [Ty(X,] := [E, ® F,_4+r] € Gr(n,, Tp(Q2), where E, (resp.
F,_4+r) is a vector subspace in V" = C? (resp in CP*4/Vy = CP) of dimension r (resp.
p—q-+r). The action of K€ on Gr(r(p— q+r) 0(£2)) descends from (A, B)[E, @ Fj_y1r] =
[(AE,) ® (BF,_44+)]. As a K®-orbit, NS, ( |0 =Gr(r,g—r)xGr(p—q+r,q—r).
OGr, : Recall that X = OGr, consists of isotropic n-planes in (C?*,S), S being a non-
degenerate symmetric bilinear form. For [V] € OGr, C Gr(n,n) we have Ty (Gr(n,n)) =
V*®C*"/V. Under the isomorphism C*"/V = V* induced by S, we have Tjy((Gr(n,n)) =
V* @ V*, and Ty (OGr,) = A*V*. At the base point 0 = [Vy] € OGr, identify T X with
A2V = A%(C") =2 ME(n,n). Here, ME(n,n) denotes the set of anti-symmetric n x n matri-
ces with complex entries. Take C™ to consist of column vectors w, on which GL(n, C) acts by
A(w) = Aw. Let K€ be the image of GL(n, C) in GL(A2C") by the action A(Z) = AZ A! for
Z € ME(n,n). By definition N'S,(Q)|o C Gr(n,, To(Q)), n, := r(2r —1). When o € D,(X)
corresponds to X, C OGr,, and X, passes through 0, we have [To(X,)] := [A*(Eq,)] €
Gr(r(2r—1),Ty(2)), By C C" being a (2r)-plane. The action of K€ on N'S,.(2)o descends
from A(A%(Ey,)) = A2(A(E,,)) for A € GL(n,C) and [Ey,] € Gr(2r,n—2r). As a K -orbit,
NS.(Q)o is the image of Gr(2r,n — 2r) in Gr (r(2r — 1),T5(2)) under the holomorphic
embedding A : Gr(2r,n—2r) — Gr (r(2r — 1), A*(C")) defined by A\([E2,]) = [A*(Fs,)] for
any (2r)-plane E,,. C C".

LGr, : Recall that X = LGr, consists of isotropic n-planes in (C*",.J,), J, being
a symplectic form. For [V] € LGr, C Gr(n,n) we have Ty (Gr(n,n)) = V* @ C*"/V =
V*®@V* induced by J,, and Ty (LGry,) = S?V*. At the base point 0 = [Vy] € OGr,, identify
ToX with S?Vy = S%2(C") = ME(n,n). Here, ME(n,n) denotes the set of symmetric
n X n matrices with complex entries. Let K€ be the image of GL(n,C) in GL(S*C") by
the action A(Z) = AZA! for Z € ME(n,n). By definition NS,.(Q)|o € Gr(n,, To(Q2)),

N, = ( TH . When ¢ € D,(X) corresponds to X, C LGr,, and X, passes through 0, we

have [TO(XU)] = [S*(E,)] € Gr (T () TO(Q)) E, C C™ being an r-plane. The action
of K€ on NS,(Q)|o descends from A(S?(E,)) = S?(A(E,)) for A € GL(n,C) and [E,] €
Gr(r,n —r). As a KC-orbit, NS, (Q)|o is the image of Gr(r,n —r) in Gr (T r+l) TO(Q)>

under the holomorphic embedding v : Gr(r,n —r) — Gr (T(TH SZ(C”)> defined by

v([E.]) = [S*(E,)], E. C C" being an r-plane.
0
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3. SUBGRASSMANNIANS IN THE MODULI SPACES
Definition 3.1. (1) For 7 € Dy(X) or 7 € D, 1 with s <7, define
Zl={oeD(X): X, C X,}

and

=

Z7
(2) For pp € Dy(X) or p € D,

={o € DT’%(X): X, C X,}.
7%(X) with s > r, define
Q, ={oeD.(X): X, C X,.}
and )
Q% ={o €D, 1(X): X, C X,}.
From the definitions, we obtain the following for X, = Xy, v,) or X, = Xy, w)
Zl ={(Wi,W) € D(X) : Wy C V1, Vo C Wa}
and
Q; = {(W17W2) € DT(X) Vi C Wl, Wy C ‘/2}
For a given r, we will omit the superscript r if there is no confusion.
Let pr: F(a,b; Vx) — Gr(a, Vx) be the projection defined by
pr(Vi,Va) = Vi,
where Vx = CP*4 if X = Gr(q,p) and C**, if X = OGr,, or LGr,,.
Definition 3.2. For a given r, define
DT(X) = pT(IDT(X))? Zy = pT(Zr)7 Qu = pT(Q#),

and

D,y (X)i=pr(D, 4 (X)), ZFi=pr(2), Qi == pr(Qh).

D,(X) is a submanifold of Gr(a, V), where a = ¢ —r if X is of type [ or IIl and a = 2(q — r)
if X is of type II and Z,, Q,, are subgrassmannians of D, (X).

In the case X = Gr(q,p), @, is the image of the holomorphic embedding » : Gr(1,V5/Vi) —
Gr(a+ 1,V3), a := dim(1}), defined by setting, for any 1-dimensional complex vector subspace
0 C Vo /Vi,1(0) = Wy where Wy, C Va is the unique (@ + 1)-dimensional complex vector subspace
in V5 such that W5, D Vi and such that Ws,/V; = . The description of @), for X = OGr,, and
X = LGr, are similar. More precisely, for r fixed and for 7 € Ds(X), s < r and for u € Dy(X), s >
r, we have Table [I]

TABLE 1. Subgrassmannians

X DT(X) Zr (X‘r = X(V1,V2)) Q,u (X,u - X(V1,V2))
GT(‘LP) GT((] -7 (Cp+q) Gr(q -7 ‘/1) {V € G’I"(q - ‘/2) : ‘/1 C V}
OGr, | OGr(2[n/2] —2r,C*) | Gr(2[n/2] — 2r,V}) | {V € OGr(2[n/2] — 2r,V}): V; C V}
LGr, SGr(n —r,C™) Gr(n—r, V) {VeSGrin—nr,Vt): Vy CV}

In particular, if 7 € D,_1(X) and p € D,1(X), we have Table 2}
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TABLE 2. Subgrassmannians when the rank difference |s —r| equals 1

X ZT (XT — X(V1,V2)) Qu (XM — X(VLVQ))
Gr(g,p) | Gr(q—r,V1)=Gr(1, V) Vi® Gr(1,Va/Wh)

OGr, | Gr(2[n/2] —2r,V1)=Gr(2,V") | Vi ® OGr(2, V- V)
LGr, Gr(n —r,V1)=Gr(1, V) VidGr(l,Vii/ W)

Table 1 above gives in particular for comparison the pairs (D,(X), Z"), where 7 € Dy(X) and the
pairs (D,(X),Q7,), where € Dy(X), and Table 2 gives the special cases where the gap [s — 7] is

equal to 1. In the case of type-II Grassmannians we need to consider in addition Dn%(X ) Z:’%
where 7 € D,(X), ZI, where 7 € DT_L%(X), and Q;’%, where p € D,(X). If we label D;(X) as
being of level t, D, 1 (X) as being oflevel t+3, Z7 for 7 € Dy(X) as being of level ¢, ZZ, 7 € D, 1 (X)
as being of level t + 1 5, and Qu , where p € Dt( ), as being of level ¢ + 5 L then we will need to
consider for comparison the pairs (D, 1 (X), zZy ) where 7 € D,(X), the pairs (D,(X), ZI), where

TE DT_L%(X) and the pairs (D, ( ) QT ) where 7 € D,.(X)). These are pairs (A, B), where the

gap of the levels of A and B are equal to —. For this purpose we have the data given by following
Table 3, noting that for type-1I Grassmannians we have Dr,z( ) = Gr(2[%] —2r —1,C*"). To be
consistent with the other tables, we drop the reference to r in the table.

TABLE 3. Subgrassmannians when X is of type II and the gap is %

1 1
X | ZHX, = Xy € Do(X)) | Ze (X, = Xpaw. € D13 (X) | QF (X, = Xpaum)

OGr, | Gr(2[2] —2r — 1L,V)=Gr(L,Vy) | Gr2[3] —2r, Vi) 2 Gr(L, V) | Vi® OGr(1,ViH/ V)

Let X = G/P, where G is one of the complex simple Lie groups SL(q + p,C)/pptqlpiqs
SO(2n,C)/{£l,} or Sp(n,C)/{£l,} according to the type of X and P is a maximal para-
bolic subgroup of G. Then D,(X) and D,(X) are biholomorphic to G/P’,G/P" with parabolic
subgroups P’, P” of G and their automorphism groups are exactly G if r # 0 (see Section 3.3 in
[A95]). In particular, D,(X) and D, (X) are rational homogeneous spaces.

We say that D,.(X) is connected by chains of Z. with 7 € D,_; if, for any two points A, B in
D, (X), there exist 71, ...,7 € D,_1(X) for some k, such that Z, NZ,. , #0foralli=1,... , k—1

Ti+1

and A € Z,,, B € Z,, . A similar definition can be apphed to chains of Qu with € D,41(X) and
1
chains of Z? with 7 € DT_L%(X).

Lemma 3.3. D,(X) is connected by chains of Z. with 7 € D,_1(X) and chains of Q, with
1

€ Dy (X). If X is of type I, DT’%(X) is connected by chains of Z? with T € D,.(X) and D,(X)

is connected by chains of Z. with T € DPL%(X)

Proof. We will prove the lemma when X is of the type I. The same argument can be applied to

other cases. Let X = Gr(q,p). Then D,.(X) = F(q¢ —r,p+r;CP™9) and D,(X) = Gr(q — r,CPT9)
by Table . For two distinct points xg,z; € D,(X), choose a sequence Vg, ..., V,, € D,(X) such
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that
xo=Vo, 21 =Vp, dim(V;.1NV)) =qg—r—1,i=1,...m.
Define
Wi:‘/yj+‘/i+1, i:O,...,m—l.
Then zy and z; are connected by the chain of Z,, = Gr(q —r,W;), 1 <i < m, and by the chain
of Q. =ViNnVi) @ Gr(L, W;/(ViNVi41)),0<i <m— 1. O

Define

By Lemma [2.1| we obtain
Y, =D (X)N{V € Gr(a,Vx) : I, 4|y =0}
for some suitable a and I, ,.

Lemma 3.4. The closed submanifold ¥, C D,(X) inherits from D,.(X) the structure of a Levi-
nondegenerate homogeneous CR manifold whose Levi form has eigenvalues of both signs such that
pr:D.(S,) = X, is a CR diffeomorphism.

Proof. In [Ki21l, Section 2|, It was shown that ¥, has the structure of a Levi-nondegenerate CR
manifold whose Levi form has eigenvalues of both signs. We only need to show that pr is one to
one since it is smooth and regular. Let o € D,(S,). Then o is expressed by the set of g-planes x
satisfying
Spanc{epi1 A Aeprgr} C & C Spang{e,_r A+ Aepiq}
Therefore ¢ is determined uniquely by the I, ;-isotropic space Cepy1 A -+ A epiq_y by Lemma [2.1]
O

Lemma 3.5. Let s <1 and let 7 € Dy(X). Then T € Dy(S;) if and only if Z, C %,.

Proof. We only consider the case where X = Gr(q,p). The same argument can be applied to
X = OGr, or X = LGry,. Let 7 € Dy(S,). We may express X, as X, w,) with I, ;-isotropic
(¢ — s)-dimensional subspace W; and (p + s)-dimensional subspace W5. Then any element Xy, v;)
in Z, satisfies V; C W;. Hence we obtain Z, C %,. Conversely, W, is spanned by {V; : V; C W;}
and if W} is not a null space of I,,, then there exists V; C W; of dimension (¢ — r) such that
IM}VI # 0, i.e., pr(o) €%, for pr(c) =V, € Z,. O

Lemma 3.6. Let X = Gr(q,p) or LGry,. If jt € Dyy1(Sy41), then Q, NE, is a real hyperquadric
in Q.

Proof. If X = Gr(q,p), we may express X, as Xy, w,) with I, ;-isotropic (¢ —r — 1)-dimensional
subspace W; and (p + r + 1)-dimensional subspace W,. Hence any element in @), N X, can be
represented by a vector w € Wy /W satisfying I, ,|w,rw = 0. We can apply the same argument to
the case where X = LGr,,. O

Let 7 be fixed. Since a maximal integral manifold of the CR bundle 713, is a maximal complex
submanifold of ¥, by Section 3 in [Ki21], we obtain that Z,, 7 € Dy(Sp), is a maximal complex
manifold in >, and vice versa.

Lemma 3.7. Let X = Gr(q,p). Then X, is covered by Grassmannians of rank min(r,q — r).
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Proof. Choose a point x € X,.. Then there exists a (¢—r)-dimensional I, ,-isotropic vector space V;
representing . Choose a g-dimensional [, ,-isotropic space W, that contains V,,. Then Gr(qg—r, W)
is a subgrassmannian of rank min(r,q — r) in X, passing through x. O

Let X = Gr(q,p) so that D,.(X) = Gr(q — r,CP*9). In Harish-Chandra coordinates {(x;y; 2);
r,€ MC(r,q—71), y € M®(q—r,q—1r), 2 € M®(p— g+ r,q — )} on a big Schubert cell of
Gr(q— r,CP*9), 3, is defined by

I, +a2"v—y'y—2"2=0,
where z* = 7' and so on. At P = (0;1,_,;0) € X,, the real tangent space T5Y, is defined by
dy’ +dy;' =0, i,j=1,....q—r
and the complex tangent space T};OET is defined by
dy =0, d,j=1,...,q—r.

Therefore the real dimension of %, is 2(¢ — r)(p + r) — (¢ — r)? and the CR dimension of ¥, is
(¢ —7)(p+r) — (¢ —r)* Furthermore, for the complex structure J of D,(X), we obtain

J(TEZT) = {dyz‘j - dgji = 0},
and hence ¥, is a generic CR manifold in D, (X). A maximal complex manifold M in ¥, passing
through P should satisfy the system
dz* Ndx — dy* Ndy — dz" Ndz = 0.
Therefore on Tp M, we obtain
dy =10
and
dz* Ndx — dz* Ndz = 0.

Hence maximal complex manifolds in ¥, passing through P are locally equivalent to

{(z;1—; Az) : w € My, } (3.1)
for a (p — ¢+ r) x r matrix A such that A*A = I,.

The contact form 6 on a CR manifold S is a matrix-valued C-linear one-form on the complexified
tangent bundle of S such that

ker(9) = TS + TS,
where T1°S is the CR bundle and T%1S = T1.0S.

Lemma 3.8. The CR structure of X, is Levi-nondegenerate. Furthermore, the CR structure of
Y 18 bracket generating in the sense that for any nonzero real tangent vector v, there exist two
(1,0) wvectors wy, we such that O N\ df(v,wy,Ws) # 0, where 6 is a contact form on %,.

Proof. For the CR structure of ¥, when X is of type I, see [Ki21]. In the proof, we only consider
X = LGr,. The same argument can be applied for X = OGr,,. Let X = LGr,, and hence D, (X) =
SGr(n—r,C*"). We regard D,(X) as a submanifold in Gr(n —r,C*"). Since everything is purely
local, we can choose Harish-Chandra coordinates (z;y; 2); x,2 € M®(r,n—7), y € M®(n—r,n—r),
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on a big Schubert cell W C Gr(n — r,C?"), where W is identified with MS(n + r,n —r) =
MC(r,n—r)® M(n —r,n—1r)® MS(r,n —r); and WN SGr(n — r,C?") is defined by

y—y +atz— =0 (3.2)
since an (n — r)-plane in W lies in SGr(n —r,C*") if and only if it is isotropic with respect to the
symplectic form .J,, on C**, and W N ¥, is defined by (3.2)) and

Iy, +ax"c—y'y—2"2=0, (3.3)

where z* = Z' and so on, since WNX, C WNSGr(n—r,C*) and it consists precisely of (n —r)-
planes therein isotropic with respect to the indefinite Hermitian bilinear form I,,,, on C*". Fix
P =(0;1,_,;0). Then,
TpD,.(X) = {dy — dy* = 0}
and
TpY, = {dy — dy' = dy + dy* = 0}.

Therefore we obtain

TpDy(X) = TpY, + J(TpS,), (3.4)

where J is the complex structure of D,.(X). Since X, is homogeneous, (3.4]) holds for any P € ¥,
i.e., ¥, is a generic CR manifold in D, (X).
Now choose 7 € Dy(Sp) such that P € Z,. By Lemma[3.5, we obtain Z, C ¥, and hence

TpZ, C TR, = {dy = 0}.

On the other hand, at P = (0; I,,,; 0), subgrassmannians of the form {(z; I,,_,; Az) : © € M5, _,}
or {(Az; In_,;2):2¢€ME } with r X r symmetric matrices A are contained in Y,., which implies

Spang {UTPZT} = {dy = 0},

where the union is taken over all 7 € Dy(Sy) such that Z, > P.
Let

0 :=a*de —y'dy — z*dz, and 0:=dy+ z'dz — z'dx.

Then, 6 is a skew-Hermitian contact form on {I,,_, + z*z — y*y — z*z = 0} and 0 is a symmetric
one form on D, (X) (by equation (3.2])). Moreover, since J, = 0 on 7 and P € Z, if and only if
P C 7 as subspaces of Vx, by differentiating

Jo(v,w) =0, vCP, wCr,

we obtain

TpZ, C {0 =0}
for al~1 Z, T € Dy(X2) with P € Z,.. Hence, by the same argument as above, we can show that 6
and 6 together define the CR structure on ¥,. Notice that at P = (0;1,,_,;0),

OAdf = dy A (dat A dz — d2t A dx)
on TpD,(X) and hence the proof is completed. O
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4. RIGIDITY OF THE PAIR (SGr(q,C*"), Gr(q, C*"))

We consider the question of rigidity for mappings for the pair (X, X’), where X is the symplectic
Grassmannian SGr(q, C*"), 2 < ¢ < n, X’ is the Grassmannian Gr(q, C*"), and X is identified
with its image inside X’ by a standard embedding in the obvious way.

The framework for formulating the rigidity problem above is the geometric theory of unir-
uled projective manifolds X based on the study of varieties of minimal rational tangents (cf.
[HwMOIS], [HwM99], [MO8b], [M16], [MZ19]). From Mori theory there exists on X a non-constant
parametrized rational curve fy : P* — X which is free (i.e., ffTX > 0 in the sense that fiTX
decomposes into a direct sum of holomorphic line bundles of degree > 0 on P!) such that deforma-
tions of the cycle [fo(P!)] cannot split into two irreducible components at a general point = € X.
The space consisting of fy and its deformations f as free rational curves, modulo the natural action
by Aut(P!) = PSL(2,C), given by (f,p) — f o for ¢ € Aut(P!), defines a minimal rational
component K, and a member [f] € K is called a minimal rational curve. We specialize to the case
where X is of Picard number 1, in which case X is necessary Fano. In what follows when we speak
of minimal rational curves and minimal rational components we will make the more restrictive
assumption that deg(f;7'X) is minimal among all free parametrized rational curves on X.

There is a smallest subvariety B C X such that for z € X — B the space K, C K of minimal
rational curves passing through z is compact. We call B C X the bad set of (X,K). For a
general point z € X by the variety of minimal rational tangents %,(X) we mean the Zariski
closure (equivalently topological closure) of the set of all tangents [df(0)(TP')] € PT,(X) of
(parametrized) minimal rational curves belonging to K such that f(0) = z and f is immersed at
0. By Kebekus [Ke02], at a general point x € X every minimal rational curve belonging to K and
passing through x is immersed, at (each branch passing through) the point x, so that it is not
necessary to take Zariski closure in the definition of %, (X).

The rigidity results in this section and in Section 5] will be used to show the rigidity of the induced
moduli map f? (or its analogue) in Section |7} Here by rigidity of the pair (SGr(¢, C*"), Gr(q, C*"))
we will mean a form of rigidity weaker than the notion of rigidity of an admissible pair (X, X’) as
was defined in [MZI9] but which is nonetheless sufficient for our purpose (cf. Proposition [£.13)). In
a nutshell the support S C X’ of the sub-VMRT structure we consider comes from a holomorphic
embedding H : U — X’ on some nonempty connected open subset U C X, which, owing to the
specific way that H is defined starting with a proper holomorphic map f :  — ', can be proven
by means of CR geometry to transform any connected open subset of a minimal rational curve
into a minimal rational curve (as is given in the proof of Lemma for the case of (X, X")),
from which it follows that H admits a rational extension by the proof of [HoM10, Theorem 1.1]
of non-equidimensional Cartan-Fubini extension (cf. proof of Proposition . One may say that
we are proving more precisely rigidity of the triple (SGr(q, C*"), Gr(q, C*"); H).

The main result of this section is Proposition proving that for a VMRT-respecting holomor-
phic map H : U — X’ defined on a nonempty connected open subset U C X modeled on the pair
(X, X') of rational homogeneous manifolds of Picard number 1, i.e., H'(X, 0*) 2 Z H'(X', O*) =
Z, which is known to extend to a rational map H : X --» X’ (where by abuse of notation we use
the same symbol H to denote both the originally defined map on U and its rational extension to
X), the extended map is actually a standard holomorphic embedding H : X — Y of X onto some
complex submanifold Y C X, i.e., it is the obvious embedding 2 : SGr(q, C**) — Gr(q, C**) up
to automorphisms of both the domain and the target manifolds.
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The problem for the case of the pair (SGr(q,C*"), Gr(q,C*")),n > 2,SGr(n,C*) = LGr,,
the Lagrangian Grassmannian of rank n, has been settled in [M19] in which it was proven that
the admissible pair of compact Hermitian symmetric spaces (LG7,, Gr(n,n)), which is of non-
subdiagram type, is rigid in the sense of the geometric theory of sub-VMRT structures. Here for
the purpose of our application to Theorem 1.2, the map H arises from a proper holomorphic
map f : D' — D} . and we will be able to establish that H extends to a holomorphic map
from SGr(q,C*) into Gr(q,C*"), and we deal in this section with the question whether H :
SGr(q,C*) — Gr(q,C*) is a standard embedding.

For the purpose of showing that H is a standard embedding, we generalize certain arguments
in [M19] for the pair (LGry,, Gr(n,n)) to our situation. Here we will recall some basic notions
from the theory of sub-VMRT structures in order to be able to apply the argument of parallel
transport along minimal rational curves as in [M19]. As opposed to the Lagrangian Grassmannian,
the problem for parallel transport on symplectic Grassmannian X = SGr(q,C**) for 2 < ¢ <n
exhibit new difficulties.

The problem of rigidity of an admissible pair (X, X”) is first of all related to the Recognition
Problem of X. To put things in perspective, let us recall the Recognition Problem for a rational
homogeneous space X = G/P of Picard number 1. Let K be the unique minimal rational compo-
nent on X = G/P. The VMRTs %,(X) at all points © € X are equivalent to each other in the
following sense. Take 0 = eP € X as a reference point. Then, for every point x € X, the inclusion
¢.(X) C PT,(X) is projectively equivalent to the inclusion 6,(X) C PTp(X) in the sense that
there exists a projective linear isomorphism A : PTo(X) — PT,(X) such that A(%5(X)) = €.(X).
We say that the Recognition Problem for X is solved in the affirmative if and only if the following
statement (f) holds true: (1) Let (Y,H) be a Fano manifold of Picard number 1 equipped with
a minimal rational component H, and denote by €,(Y) the VMRT of (Y,H) at a general point
y € Y. Suppose for a general pointy € Y the inclusion €,(Y) C PT,(Y) is projectively equivalent
to 60(X) C 6o(X). Then, Y is biholomorphically equivalent to X. We note that although the
Recognition Problem is stated here for the case where Y of Picard number 1, the known (par-
tially) affirmative solutions (cf. Theorem apply even without the Picard number 1 condition
on Y to give an open VMRT-respecting embedding into X of some sufficiently small neighbor-
hood U (in the complex topology) of a general minimal rational curve ¢ C Y. It turns out that,
coupled with the extension theorem for sub-VMRT structures (from [MZ19, Main Theorem 2])
and the Thickening Lemma (Theorem here), this is enough for our application to solve in the
affirmative the rigidity problem of the pair (SGr(q, C*"), Gr(q, C**)),n > 2.

The parabolic subgroup P C G is determined by the marking of a single node « of the Dynkin
diagram ©(G) of G. When the node « is a long root (resp. short root), we will call X = G/P a
rational homogeneous manifold of Picard number 1 associated to a long root (resp. short root). For
instance, when G is of A, D or E type, all simple roots are of the same length, hence X = G/P
is always associated to a long root. We call the Recognition Problem for X = G/P the long-
root case (resp. short-root case) when X = G/P is associated to a long root (resp. short root).
The long-root case of the Recognition Problem was solved in the affirmative in the cases where
X = G/P is Hermitian symmetric or contact homogeneous by Mok [M08d]| and by Hong-Hwang
[HHOg| for the rest of the long-root cases.

We return now to our situation of the pair (SGr(q, C*"), Gr(q, C*")), n > 2, where we need first
of all to deal with the Recognition Problem for X = SGr(n,C?"), n > 2. Here X = G/P where G
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is the automorphism group of (C**, ), where o is a (complex) symplectic form on C**, in other
words the complex Lie group Sp(n, C) of symplectic transformations. The Dynkin diagram of its
Lie algebra sp(n, C) is C,,, consisting of n simple roots ay, ag, -+ , ay_1, &y, where oy and «, are
long roots, and ay, - -+, a,_1 are short roots. We have SGr(q, C*") = G/P, where p C g is the
parabolic subalgebra corresponding to the ¢-th node «,, which is a short root since by definition
2<g<n.

First of all, X is marked at a short root, and the Recognition Problem for X is much harder than
the long-root case. Fortunately, the Recognition Problem has recently been settled by [HwL21],
which, together with the Thickening Lemma, allows us to analytically continue H along certain
minimal rational curves. (It should be noted that, as will be explained later, the Recognition
Problem is not solved in the affirmative as stated above, but an additional invariant needs to be
determined in order for us to assert that Y is biholomorphically equivalent to X in the notation of
the third last paragraph.) Secondly, the moduli space of minimal rational curves on X is no longer
homogeneous, and for our purpose arguments by parallel transport along minimal rational curves
can only be carried out for general minimal rational curves, but we show that it is nonetheless
sufficient to prove that the extended rational map H : X --» X’ has no indeterminacies and is
in fact a holomorphic immersion.

Local calculations in terms of Harish-Chandra coordinates to be deferred to Section [l allow
us to show that H : X — X’ can be dilated via C*-action to a standard embedding, and the
homotopy and cohomological arguments (involving volume forms) as in [M19] allows us to recover
H as the obvious embedding up to automorphisms of the domain and target manifolds.

We now consider the pair (X, X’) = (SGr(q,C*"), Gr(q,C*)), 2 < ¢ < n from the perspective
of the geometric theory of sub-VMRT structures. The obvious inclusion map 2: X < X’ sends

minimal rational curves onto minimal rational curves, and we have v, : Hy(X,Z) — Hy(X',Z). We
identify X’ as a projective submanifold by means of the Pliicker embedding v: Gr(q, C**) < PV,

N +1 = dimc A\? ((CQ”) = q!-((QQZEq)!' To relate to the theory of sub-VMRT structures as given in

IMZ19] and [M19] we have first of all

Lemma 4.1. In the notation above (X, X') is an admissible pair of rational homogeneous mani-
folds of Picard number 1 in the sense of [MZ19] which is of non-subdiagram type.

Proof. To prove that the pair (X, X’) is an admissible pair of rational homogeneous manifolds of
Picard number 1 in the sense of [MZ19], it suffices to show that X is a linear section of X’ C PV.

Denote by J,, the underlying symplectic form on C*". For ¢ > 2let A: @7 (C*") — R (c*)
be the linear map uniquely determined by Au; ® -+ ® u,) = Jp(ug,u2)(uz ® -+ ® u,), and
denote by p: A?(C*) — ®7% (C?") its skew-symmetrization. We have readily u: A (C?*) —
N (C*), where A’ C?* := C. Now, for IT € Gr(q,C**) = X' spanned by uy, - , g, Uy A~ - - A
Uy (q—2) are linearly independent as x: {1,---,¢—2} — {1,--- , ¢} ranges over all injective maps,
hence pi(uy A -+ Aug) = 0 if and only if J,(us), us2)) = 0 for any permutation s of {1,---,¢}.
Thus p(ug A -+ Aug) = 0 if and only if IT is isotropic in (C*", J,,). In other words, X C X’ is the
linear section defined by the vanishing of the vector-valued linear map p on A? ((Czn).

Since any rational homogeneous manifold determined by a subdiagram of the marked Dynkin
diagram for a Grassmannian must itself necessarily be a Grassmannian, the admissible pair (X, X’)
is of non-subdiagram type. O
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Note that in the case where ¢ = n, X is the Lagrangian Grassmannian LGr,, and the rigidity
phenomenon for substructures for the admissible pair (X, X’) has been demonstrated in [M19],
which is stronger than the rigidity phenomenon for mappings for the same pair (X, X’). Thus,
in what follows our focus is in the case 2 < g < n, although in the statement of results for the
purpose of uniformity we will include the case where X is a Lagrangian Grassmannian as a special
case. We refer the reader to [HwMO05] and [HwL21] for descriptions of the VMRT on a symplectic
Grassmannian, and to [MZ19] for basics concerning sub-VMRT structures. For simplicity, we will
consider sub-VMRT structures w: €(S) — S on some locally closed complex submanifolds mod-
eled on the admissible pair (X, X’) which are already known to extend to a projective subvariety
Y C X', since for the application to complete the proof of the Theorem in the case of proper
holomorphic maps from type III to type I domains we will be led to a VMRT—respecting% map

h: U —s S C X’ which is known to extend to a rational map H: X --» X’ (cf. Proposition [4.10)).

We summarize in what follows information about the VMRT of a symplectic Grassmannian
taken from [HwMO05] which is of relevance for our further discussion on the rational map H.
With respect to the standard labeling of nodes in Dynkin diagrams as for instance found in
[Ya93|, the symplectic Grassmannian SGr(q, C*"), 2 < ¢ < n (denoted as S,,, in [HwMOF]) is of
type (sp,,, o). Fix a Cartan subalgebra h C sp,. For 2 < ¢ < n the symplectic Grassmannian
X := SGr(q,C?") is a rational homogeneous space of Picard number 1 associated to a graded
complex Lie algebra of depth 2, sp, =:g =g 2P g_1 D go P g1 g2, Where for k£ # 0 the vector
space g is spanned by root spaces g” for roots p with coefficient equal to k£ in the simple root
ag, and g, = h @ t, where t is spanned by root spaces g” for roots p with vanishing coefficient
in the simple root «a,. We have [gx, g/] C gx1¢, setting g, := 0 whenever p¢{—2,—1,0,1,2}. The
parabolic subalgebra p is given by p = g o ® g_1 © go. Writing G = Sp(n,C) and P C G for
the parabolic subgroup corresponding to the parabolic subalgebra p C g, we have X = G/P
and the identification To(G/P) = g1 @ g2. The vector subspace g, C g is a reductive Lie algebra
corresponding to a Levi factor L := (G, C P, which has a one-dimensional center 3 and we have a
direct sum decomposition of Lie algebras g, = 3 @ sl, © sp,,_, (the semisimple part corresponding
to the Dynkin subdiagram obtained by removing «,). L acts irreducibly on g; and go. The isotropy
action of P on g; defines the minimal G-invariant holomorphic distribution D C T'X. We have
D = U* ® Q, where U is the universal rank-¢ holomorphic vector bundle inherited from the
Grassmannian X' = Gr(q,C*") D SGr(q,C*") = X, and @ is a rank 2(n — ¢) holomorphic vector
bundle. At 0 € G/P the direct factor up to isogeny SL(q,C) of L acts nontrivially on Uj while
the direct factor up to isogeny Sp(n — ¢, C) acts nontrivially on @g. The isotropy action of P on g
defines a holomorphic vector bundle R on X which is isomorphic to TX/D. We have R = S2U*.

A point z € SGr(g, C*") corresponds to a g-dimensional complex vector subspace V in (C**, J,,).
Denoting by V+ C C?" the annihilator of V with respect to J,,, by hypothesis we have V C V*.
(We have Qg = V1 /V equipped with a symplectic form induced from .J,.) A minimal rational curve
A on X containing # € X is determined by the choice of complex vector subspaces A, B C C**,
dim¢ A =q—1, dim¢ B = ¢+ 1, such that A C V C B. We say that the minimal rational curve
A C X is special if and only if B is isotropic in (C?",.J,,), otherwise A is referred to as a “general
minimal rational curve” on X. Then, the set of vectors tangent to special minimal rational curves
on X span a proper holomorphic distribution which is precisely D C T'X. For a special rational
curve A passing through = € X, T,(A) =: Ca, we will refer to [a] € €,(X) as a special rational
tangent.
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The VMRT %,(X) C PTy(X) can be described explicitly as follows.

Lemma 4.2. The highest weight orbit #5(X) = PU; ®@PQo — P(U®Qo) of the L-representation
in PTy(D) = Py, is the variety of special rational tangents at 0 € X, A (X) C 6o(X), the VMRT
at 0 € X. Writing Wy for the highest weight orbit of the L-representation in Pgs, which is the
image of PU; in Pgy under the Veronese embedding, we have Wy C 6o(X). Let N C P be the
nilpotent Lie subgroup corresponding to the nilpotent Lie subalgebra n:=g_o @ g_1 C p, then the
orbit of [Ao © o], 0 # Xg € Ug, under N is given by N[Ao®Xo] = {[Ao @ i+ A®Ao] € P(g1 @ g2) :
e Qot C 6o(X). Moreover the VMRT 6o(X) is precisely the union of .#5(X) and the N-orbits
N[A® A] as X ranges over non-zero vectors in Uj. As a consequence 6o(X) is the union of ./ (X),
the unique closed P-orbit in 6o(X), and the unique open P-orbit O = €o(X)— S (X). Thus,
Go(X) = {[AOpu + AN 0 # N € Us, i € Qol.

Proof. Since SL(q,C) acts transitively on W, and N acts transitively on N[A®A] by definition, P
acts transitively on O = %(X)—(X). Clearly O C %y(X) is the unique (Zariski) open P-orbit.
All other statements are implicitly in [HwMO05, Chapter 2]. O

From the explicit description of the VMRT %(X) on the symplectic Grassmannian X, by a
straightforward determination of the projective second fundamental form of %, (X) C PTo(X) as
a projective submanifold we have readily the following characterization of .#,(X) C %p(X) and
O C 6, (X) in terms of projective geometry.

Lemma 4.3 (Lemma 6.6 in [HwL21]). Denote by ¢: S?T%6(X) — Neyx)pro(x) the projective
second fundamental form as a holomorphic bundle map. Then ( is surjective at [o] € 6o(X) if
and only if o] € O.

In Proposition [4.10| we will prove that H is a holomorphic immersion. The proof will rely on
the theory of geometric substructures of [MZ19], especially the Thickening Lemma, and the char-
acterization results of symplectic Grassmannians of Hwang-Li [HwL21]. Here it should be noted
that according to [HwL21], strictly speaking a symplectic Grassmannian other than a Lagrangian
Grassmannian cannot be recognized among projective manifolds of Picard number 1 solely by
the VMRT at a general point. In its place it has been shown in [HwL21] that in these cases the
symplectic Grassmannians are characterized by the VMRT at a general point together with the
nondegeneracy of the Frobenius form associated to a proper distribution determined by the VM-
RT. We observe that this condition is automatically satisfied in the problem at hand, when the
geometric substructure arises from a germ of VMRT-respecting holomorphic map.

Given a uniruled projective manifold (M, K,,) and a locally closed complex submanifold S of
M, for x € S we define €(S) := €(M) NPT(S), €.(5) := €.(M) NPT, (S). Writing u: T,.(M) —
{0} — PT,(M) for the canonical projection, for a subset E C PT,(M) we write E := y~*(E) C
T,(M) — {0} for the affinization of E. Write @ := 7|¢g): €(S) — S. The following definitions
and Lemma are taken from [MZ19].

Definition 4.4. We say that w = 7|gg): €(S) — S is a sub-VMRT structure on (M, Ky,) if
and only if
(a) the restriction of w to each irreducible component of €(S) is surjective, and

(b) at a general point x € S and for any irreducible component Ty, of €,(S), we have T', ¢
Sing( € (M)).
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Definition 4.5. Let (M, K,;) be a uniruled projective manifold M equipped with a minimal
rational component Kp;. Let w: €(S) — S, €(S) := €(M)NPT(S), be a sub-VMRT structure
on a locally closed submanifold S of M. For a point x € S, and [a] € Reg(%,(5)) N Reg(€,(M)),

we say that (%,(5), [a]), or equivalently (%,(S5), «), satisfies Condition (T) (with respect to the
sub-VMRT structure w: €(S) — S on (M, Kyy)) if and only if T, (€,(S)) = Tu(C.(M)) NT,(S).

Concerning Condition (T) we have the following lemma on linear sections Y of a projective
submanifold M uniruled by projective lines which is a special case of [MZ19, Lemma 5.5] in which
Y is further assumed nonsingular (and uniruled by projective lines).

Lemma 4.6. Let (M,Ky), M C PN, be a uniruled projective manifold endowed with a mini-
mal rational component consisting of projective lines, and denote by w: € (M) — M the VMRT
structure on M. Let Y C M be a smooth linear section of M and write €(Y) =€ (M)NPT(Y),
the sub-VMRT structure on Y. Then, for a general point z € Y and a general smooth point
la] € €.(Y), (¢.(Y),[a]) satisfies Condition (T).

For the study of rational curves on a projective variety it is essential to find free rational
curves lying on the smooth locus of the variety. From the perspective of the theory of sub-VMRT
structures the following result, which is a simplified version of the Thickening Lemma in [MZ19,
Proposition 6.1], gives a sufficient condition for finding an open neighborhood of some rational
curve which is an immersed complex submanifold.

Theorem 4.7. Let (M,Ky) be a uniruled projective manifold endowed with a minimal rational
component, dime¢ M =: n, and w: €(S) — S be a sub-VMRT structure. dim¢ S =: s, and assume
that there exists a projective subvariety Y C M such that dimcY = s and S C Y. Let o] €
€ (S) be a smooth point of both €(S) and € (M) such that w: €(S) — S is a submersion
at o], w([a]) =: z, [{] € Kn be the minimal rational curve (which is smooth at x) such that
T.(0) = Ca, and : Py — £ be the normalization of £, Py = PL. Suppose (€,(S), [a]) satisfies
Condition (T). Then, there exists an s-dimensional complex manifold E(¢), P, C E({), and a
holomorphic immersion ®: E({) — M such that ®|lp, = ¢ and such that ®(E({)) contains a
netghborhood of = on S.

Crucial to our arguments is the following solution [HwL21] of Hwang-Li giving a solution to the
Recognition Problem for the symplectic Grassmannian.

Theorem 4.8 ([HwL21]). Let X be a symplectic Grassmannian SGr(q,C*"), 0 < ¢ < n. Let Y
be a uniruled projective variety containing a smooth standard rational curve ¢y C Reg(Y') in its
smooth locus. Denote by K9 the normalized moduli space of (unparametrized) free rational curves
¢ C Reg(Y') which are deformations of ly inside Reg(Y'). Denote by €, (Y) C PT,(Y) the variety
of KY.--rational tangents at a general point y on Reg(Y') and denote by €,(Y") the topological closure
of ‘K;(Y) in PT,(Y). Assume that there exists a nonempty Euclidean open subset O C 'Y such
that for any y € O, €,(Y) C PT,(Y) is projectively equivalent to ¢,(X) C PTo(X) for a ( and
hence any) reference point 0 € X. Then, given any member [(] € K such that { is a standard
rational curve, some Fuclidean neighborhood of ¢ is biholomorphic to a Fuclidean neighborhood
of a general line in one of the presymplectic Grassmannians corresponding to (C*", i), where p
denotes a skew-symmetric complex bilinear form on C*".

For the meaning of presymplectic Grassmannians and that of a general line on such a space we
refer the reader to [HwL21].
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By the hypothesis in Theorem for any y € Y, €,(Y) C PT,(Y) is projectively equivalent
to 6o(X) C PTH(X) for a reference point 0 € X. Assuming r > 1 we have thus on O a uniquely
determined E C Ty corresponding to the subspace g;. We have the Frobenius form ¢: EQFE —
To/E defined as follows. Let y € O and v,w € E,. Shrinking the neighborhood U(y) of y if
necessary let v, w by E-valued holomorphic vector fields on U(y) such that v(y) = v and w(y) = w,
then (v, w) = [v,w|(y)/E, € T,(Y)/E, is uniquely determined independent of the holomorphic
extensions v, w € I'(U(y), F), and the Frobenius form ¢: EQFE — T/ E is defined at the arbitrary
point y € O by ¢(v ® w) = p(v,w) and extended to £ ® E by complex linearity. Since the Lie
bracket is skew-symmetric we may regard the Frobenius form as ¢: /\2 E —Tp/E.

Corollary 4.9. In the notation of the preceding paragraph and Theorem [{.8, assuming that the
Frobenius form : /\2 E — To/E is nondegenerate in the sense that for any y € O and for any
nonzero vector v € E,, there ezists w € E, such that p(v Aw) # 0. Then, in the concluding state-
ment of Theorem [].8, there exists some Euclidean neighborhood of ¢ in'Y which is biholomorphic
to a Fuclidean neighborhood of a general minimal rational curve on X.

In what follows we consider holomorphic embeddings defined on some nonempty connected open
subset U C X. Shrinking U if necessary, we may assume that AN.S is either empty or a nonempty
connected open set for any minimal rational curve A on X. (For example, composing the minimal
projective embedding of X with a local affine linear projection in inhomogeneous coordinates, we
may choose an open subset U C X which is identified by means of local holomorphic coordinates
with a convex open subset U’ C C*, so that A N U is an open subset of an affine line whenever

ANU#0.)

Proposition 4.10. Write X := SGr(q,C*") and X' := Gr(q,C*"), 2 < q < n. Suppose there
exists a nonempty connected open subset U C X and a holomorphic embedding H: U — X'
onto a locally closed complex submanifold S C X' such that for any x € U, writing € (S) =
Cr)(X') NPT (S), the inclusion €,(S) C PT,(S), for any y € S, is projectively equivalent to
6o(X) C PTo(X) for a reference point 0 € X, and such that the following statement (x) holds
true. (x) For any minimal rational curve A on X such that ANU # (0, HANU) is an open

subset of some projective line on X'. Then, H: U =4 S extends to a rational map H: X --» X'.
Furthermore, H: X—X" is in fact a holomorphic immersion onto a projective subvariety Y C X'.

Proof. Since the case of ¢ = n has been established in [M19], in what follows we assume that
2 < q < n so that X is a symplectic Grassmannian other than a Lagrangian Grassmannian. In

what follows we apply results of [HoMI0] to the case of H: U =3 S C X', which is VMRT-
respecting (i.e., H,(€3(X)) = Cr@)(X') NP(dH(T,(U)) for x € U).).

It follows from the hypothesis (x) that H admits a rational extension, by the proof of [HoM10,
Theorem 1.1] of non-equidimensional Cartan-Fubini extension. More precisely, for a VMRT-
respecting holomorphic embedding ¢ : U — X’ in general, assuming that ¢ satisfies some non-
degeneracy condition (i.e., 2(b) in the Definition preceding [HoM10, Proposition 2.1]) concerning
the second fundamental form of VMRTSs as projective subvarieties (noting that 2(a) concerning
the bad locus (X', K’') in the cited proposition is vacuous because X’ is a rational homogeneous
manifold) consists of two steps. First of all, as given in [HoMI10, loc. cit./, it is proven that the
map ¢ transforms a connected open subset of a minimal rational curve into a minimal rational
curve as a consequence of the said non-degeneracy condition. Secondly, rational extendibility of ¢
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is deduced from Hartogs extension by means of parametrized analytic continuation along minimal
rational curves as done in [HwMOI) Proposition 4.3]. Without the first step the arguments of the
second step are still valid provided that we know a priori that (x) holds true for H : U — X'.
Here (k) is taken as a hypothesis, hence H : U — X' extends rationally to H : X --» X'. (It will
be checked in Section [7] that (%) is valid for H being some moduli map f> (or its analogue) to be
defined in Section [6]) For the proof of Proposition it remains to establish the last statement
that H: X— X' is in fact a holomorphic immersion, which we proceed now to do.

There is a subvariety A C X such that the meromorphic map H: X --+ X’ is holomorphic
and of maximal rank on X — A. Write Y C X’ for the Zariski closure of H(X —A). We apply
Theorem [4.7] the Thickening Lemma adapted to our situation, to the meromorphic map H: X --»
Y in order to find an open neighborhood of ¢ in Y which is an immersed complex submanifold
where / is a certain projective line lying on Y. By the hypothesis, for every point s € S, and for
C5(S) == C:(X')NPT,(S), the inclusion €5(S) C PT,(S) is projectively equivalent to the inclusion
¢o(X) C PIy(X), 0 € X. For z € X — A, writing z := H(x), H maps some connected open
neighborhood U(z) of x on X — A onto a locally closed complex submanifold S(z) C X’. Define
¢.(S(2)) :=C.(X") NPT, (S(2)).

Consider the subset W C X — A such that the inclusion €,(S) C PT1,(S(z)) is projectively
equivalent to the inclusion %5(X) C P7y(X). Then, W contains the nonempty connected open
subset U C X—A (in the Euclidean topology). We claim that W contains a nonempty Zariski open
subset W C X—A. To see this let x: & — X’ be the Grassmann bundle whose fiber over w € X'
consists of s-planes I C T,,(X’). Denote by . C & the fiber subbundle whose fiber over w € X’
consists of s-planes I such that the inclusion PII N %, (X’) C PII is projectively equivalent to
the inclusion %5(X) C PTo(X). ¥ C & is a constructible subset. Hence, at every point w € X,
the topological closure 2, := S C P, is a Zariski closed subset of &, and .%,, contains a
nonempty Zariski open subset. Since Zariski open subsets are closed under taking unions, there
is a biggest (nonempty) Zariski open subset in .%,, to be denoted by %2 C .¥,. Let G’ be the
identity component of the automorphism group of X'. G’ = PGL(2n,C) is a connected complex
algebraic group. For w € X’ write P, C G’ for the parabolic subgroup which is the isotropic
subgroup of G’ at w, so that X = G'/P!. By the maximality of .2 C .#, it follows that .2 is
invariant under the isotropy action of P, and it follows that by varying w over X’ we have an
algebraic fiber bundle % over X’ whose fiber at w € X’ is given by .#2.

By assumption, over the connected open subset U C X the holomorphic map h: U = ScX
induces a holomorphic map 0: U — ., which is the composition ( o h, here ( is a holomorphic
section of .#° over S. The meromorphic map H: X --» Y induces a meromorphic map ©: X --»
9|y (= Z|y) such that © is holomorphic on U and ©|y = 6. Hence there exists some Zariski
open subset W C X — A containing U such that H is holomorphic and of maximal rank on W
and such that the induced holomorphic map © takes values in the Zariski open subset .#°|y of
<y, as claimed.

Write W= X—-A, W C W, AD A. Let now x € Reg(.A). Since the VMRT %,(X) C PT,(X)
is projectively nondegenerate (cf. [HwMO035]), there exists some [a] € €,(X) such that o ¢ T, (A).
Since the condition imposed on [o] is an open condition on %,(X) without loss of generality we
may assume that [ is tangent to a general minimal rational curve (in the sense of the paragraph
immediately following Theorem [4.8). Let now A be the (unique) minimal rational curve on X
passing through x such that 7T),(A) = Ca. For any point y € ANW, H is a holomorphic immersion
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at y and €,(X") NPT, (Y'), w := H(y), is projectively equivalent to %o(X) C PTo(X), where
we may take Y/ = Y if YV is smooth at H(y), and in general we take Y’ to be a nonsingular
irreducible branch of Y NV for some neighborhood V' of H(y) on X’ such that H (being a
holomorphic immersion at y) is a biholomorphism of some neighborhood U(y) of y onto Y. From

the hypothesis that H: U =9 maps open subsets of minimal rational curves onto open subsets
of minimal rational curves of X’ lying on S C X', by analytic continuation it follows that over
W C X —A, the map H is a holomorphic immersion and it maps any germ of minimal rational
curve onto a germ of minimal rational curve. Thus H maps the germ of A at y to the germ of a
(unique) minimal rational curve ¢ of X’ at w.

By the choice of A, A NW is the complement in A of a finite number of points. Let now
y € ANW (so that in particular H is an immersion at y) and such that H(y) € Reg(Y). We will
apply Theorem (the Thickening Lemma) to the minimal rational curve ¢ C X’ which lies on
Y. For this purpose we have to check the validity of Condition (T) on the pair (€, (Y"), [T (0)])
for the germ of sub-VMRT structure w: € (Y’) — Y’ for a smooth neighborhood Y’ of H(y) on
Y, €(Y') := €(X') NPT (Y’). Recall that, writing T,(¢) = Cf, by Definition [4.6] (¢.,(Y"),[3])
satisfies Condition (T) for the sub-VMRT structure w: € (Y’') — Y’ on Y’ if and only if

(1) Ts(6u(Y")) = Ts(6w(X")) N Tw(Y").

By hypothesis the inclusion %,(Y’) C PT,(Y’) is projectively equivalent to the inclusion
%o(X) C PTo(X), hence the statement () is equivalent to the statement

(1) To(%(X)) = Ty(%o(X") N Ty(X)

for v € %5(X) being a vector tangent to a general minimal rational curve on X’ passing through
0. Writing G resp. G’ for the identity component of Aut(X) resp. Aut(X’), and P C G resp.
P’ C @' for the isotropy (parabolic) subgroups at 0 € X resp. 0 € X', we have the standard
inclusions G C G’ and P = PPNG C P, X = G/P C G'/P' = X', which defines the standard
embedding ¢: X — X'. Now P’ acts transitively on the VMRT %,(X’) for the Grassmannian
X = Gr(q,C*") (which is an irreducible Hermitian symmetric space of the compact type), while
by Lemma the VMRT %,(X) of the symplectic Grassmannian X = SGr(g, C*") is almost
homogeneous under the action of P, with a unique open P-orbit O consisting of projectivizations
of non-zero vectors 7 tangent to general minimal rational curves passing through 0, and a unique
closed P-orbit F = %,(X)— O consisting of projectivizations of those v tangent to special minimal
rational curves passing through 0.

By Proposition X C, X’ C PV is a linear section when the Grassmannian X’ is identified as
a projective submanifold by the Pliicker embedding. By Proposition [4.6] at a general point x € X
and a general point [£] € €,(X), (€.(X), [£]) satisfies Condition (T) (with respect to the sub-
VMRT structure w: € (X) — X on X’). In our case by homogeneity the conclusion holds actually
at any point € X (in place of requiring = to be a general point). Thus, we may take z = 0,
and conclude that (%5(X), [¢]) satisfies Condition (T) for a general point [£] € 6,(X). Since the
statement that Condition (T) holds for (6,(X), [¢]) is invariant under the action of P it follows
that (1) must hold everywhere on the unique open P-orbit O C %,(X), hence Condition (T)
holds for (6,(X), [¢]) whenever [{] € O. As a consequence Condition (T) holds for (%, (Y"), [5]),
T,,(¢) = Cp for the sub-VMRT structure w: €(Y’) - Y' on Y'.
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On the Grassmannian X’ the minimal rational curve ¢ C X' is smooth, and the normalization
p: P, — [ is just a biholomorphism. It follows by Theorem that there exists some complex
manifold E(¢) containing P, and a biholomorphism ®: E, — ®(E,) C X’ such that ®(E,) =:
Y, C Y. We compare now the two germs of complex manifolds along rational curves given by
(X;A) on X and (Yy;¢) on Y. From our choices there is a point y € A and an open neighborhood
U(y) of y on X, such that H is holomorphic on U(y), H maps U(y) onto a neighborhood Y’
of w= H(y) on Y, and ANU(y) onto £ NY’" such that H is VMRT-respecting on U(y) and
such that, for u € U(y), €.,(X) C PT,(X) is projectively equivalent to %,(Y;) C P7,(X’). On
Y’ we have by Lemma a holomorphic distribution £ which is spanned at every point v =
H(u) by the affinization of the subset F, C %,(Y’) consisting of points where the projective
second fundamental form of €, (Y’) C PT,(Y’) fails to be surjective. Since the latter property in
projective geometry is obviously preserved by [dH], it follows that F, = [dH|(PD, N %,(U(y)))
for every point u € U(y) where D C TX is the minimal holomorphic distribution spanned by
special rational tangents. Since the Frobenius form ¢p: A* D — TX/D associated to D C T(X)
is nondegenerate (in the sense as described in Corollary everywhere on X, and we have
[dH (§),dH(n)] = dH ([, n]) for holomorphic D-valued vector fields on U(y), it follows that the
Frobenius form ¢pz: A\° E — Ty//E associated to the holomorphic distribution £ C T(Y”) is also
everywhere nondegenerate on Y’ C Y (). It follows by Theorem that, shrinking Y} if necessary,

there exists some neighborhood U, of A € X and a biholomorphism Oq: Y, = Uy such that

Oole: £ —> A, and moreover by the statement of Theorem 7.12 in [HwL21] O preserves VMRTs.
A priori Oy is unrelated to H. However, using Oy we may now identify Y (¢) as an open subset of a

copy X; of X, and consider H|y,): U(y) =Y asa VMRT-preserving biholomorphism between
the connected open subset U(y) C X and Y’ C Y (¢) C X;. It follows by the Cartan-Fubini

extension theorem of [HwMOI] that H|y(,) extends to a biholomorphism W: X —=4 X;. Thus,
shrinking Y'(¢) (as a complex manifold containing ¢) if necessary, there exists a neighborhood

U of A on X and a biholomorphism ©: U —» Y (¢) such that Oluw) = Hluw): Uly) =Y,

Ola: A =5 0. In particular, we have proven that H: X --» Y C X’ is holomorphic and in fact
a local biholomorphism at x € Reg(.A). Since x € A is arbitrary, we conclude that H is a local
biholomorphism at every point z € X —Sing(.A). Replacing now A4 by Sing(.A) and repeating
the argument a finite number of times we conclude that actually H is everywhere holomorphic
and of maximal rank on X, and hence H: X — Y C X’ is a holomorphic immersion onto the
projective subvariety Y C X ’. Since the only possible singularities of Y arise from intersection
of locally closed complex submanifolds, denoting by v: Y — Y the normalization of Y, Y is a
projective manifold, and H: X — Y C X' lifts to a holomorphic covering map H . X =Y such
that H = v o H*. As X is simply connected, we conclude that H*: X — Y is a biholomorphism,
hence H: X — Y C X' is a birational holomorphic immersion onto Y, as asserted. The proof of
Proposition is complete. O

Remark 4.11. (a) The proof in [M19] that for n > 3, (LGr,,Gr(n,C?")), is a rigid pair of
admissible rational homogeneous manifolds of Picard number 1 in the sense of the geo-
metric theory of sub-VMRT structures of Mok-Zhang [MZ19] can be adapted to yield the
same statement for (SGr(q, C**),Gr(q, C*")) for n > 3 and 2 < ¢ < n, by checking the
nondegeneracy condition for substructures as given in [MZ19, Definition 3.1, which is a
modification of the nondegeneracy condition for mappings given in [HoM10, Proposition
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2.1]. (There is a second step requiring the consideration of the restriction map of global
holomorphic vector fields from Gr(q, C*") to SGr(q,C**), which will in any event be need-
ed and checked in the proof of Proposition ) Here we have only proven the rigidity
statement only for the triple (SGr(q, C*"), Gr(q,C*"); H).

(b) Writing X = SGr(q,C*), X' = Gr(q,C* as in the proposition, note that we have not
proven that H is everywhere VMRT-respecting in the sense explained in the first paragraph
of the proof of the proposition. The latter is not clear since the VMRT-respecting property
is not a priori a closed property as we vary on X. Nonetheless, the stronger statement
that H: X — X' is everywhere VMRT-respecting is not needed for the proof of rigidity of
(X, X" H).

(c) It will be proven in Section (6| that from a proper holomorphic map f : D" — D],
satisfying 2 < ¢’ < 2q — 1, where ¢’ = min(r, s), one can derive a certain moduli map
H : U — X' for some connected open subset U C X, X = SGr(q,C*), X’ = Gr(q,C*")
and prove in Section [7] that it respects subgrassmannians in the sense of Definition SO
that in particular the hypothesis (%) in Proposition is satisfied for H : U — X'. The
proofs in Section [7] will rely on CR geometry.

As will be proven in Lemma , from the VMRT-respecting mapping h: U = Scx , by
using C*-action on X’ which preserves X, one can obtain a holomorphic one-parameter family of
VMRT-respecting holomorphic embeddings h,: U = S, C X', s € C*, Hy = H. Moreover, if
H : U — S extends to a holomorphic immersion H: X — X', then , extends to a holomorphic
immersion H,: X — X' such that H, restricted to a big Schubert cell converges to the standard
embedding uniformly on compact subsets as s tends to 0 (cf. Lemma [5.7] for details).

Recall that the holomorphic immersion H : X — X’ in Proposition restricted to a general
minimal rational curve in X is a biholomorphism onto a projective line in X’ and therefore pre-
serves the volume of projective lines with respect to the standard metric. Due to the construction,
the same is true for H,, s € C*.

Proposition 4.12. Let H: X — Y be a birational holomorphic immersion onto Y C X' such
that H.: Hy(X,7Z) =, Hy(X',Z) =2 7Z. Then, there ezists a one-parameter family of birational
holomorphic immersions Hy: X — Y, onto Y, C X', s € C* such that Hy = H, and such that the
reduced irreducible cycles [Ys] € Chow(X") converge as cycles to [Yy] € Chow(X'), Yo C X' being

the image of a standard embedding Hy: X = Yy C X.

Proof. Let w resp. w’ be a Kéhler form on X resp. X’ such that minimal rational curves on X
resp. X' are of area equal to 1. For s € C*, since Hy,: Hy(X,Z) — Hy(X',Z) = Z, hence

H*: HX(X',7) —» H2(X,Z) = Z, the Kéhler forms w and Hw' must be cohomologous, and we
have

o

Volume(Ys, w') = Volume(X, w).

On the other hand, for the standard embedding 2: X < X’ we also have ¢*: H*(X'|Z) —
H?*(X,7Z) & Z, so that we also have Volume(Yy,w’) = Volume(X, w). Now H, converges uniformly
on compact subsets of a big Schubert cell . C X to the standard embedding Hy: . — " C
X', " C X' being a big Schubert cell. Write m := dim¢ X. It follows that as m-cycles, the
reduced m-cycles [Y;] must subconverge to the sum of the reduced m-cycle [Yy] and some cycle R
with Supp(R) C X'—.". Finally, knowing that for s € C*, Volume(Y;,w') = Volume(Yy,w') =
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Volume(X,w) it follows that Volume(R,w’) = 0, which implies that R = (), hence [Y;] converges
to [Yo] as reduced cycles, as asserted. O

We remark that since Y[ in Proposition is a smooth variety, by the same argument in [M19]
H: X — X’ is a holomorphic embedding. Define a family ) := {(s,y) : s € C,y € Y5} which is a
complex analytic subvariety ) C C x X’. Since all fibers of ) — C are equidimensional smooth
and reduced subvarieties of C x X', J — C is a regular family of projective submanifolds.

Proposition 4.13. The birational holomorphic immersion H: X —'Y C X' in Proposition

1s actually a standard embedding H: X =Y C X' onto a complex submanifold Y C X'. In
other words, regarding X C X' by means of the standard inclusion 1: X < X' of the symplectic

Grassmannian X = SGr(n —r,C*") as a subset of the Grassmannian X' = Gr(n —r,C*"), there
exists some = € G' = Auto(X') such that Z|x = H, Y = Z(X).

Proof. By Proposition and the remark above, there exists a one-parameter family of biholo-
morphism Hy: X — Y; onto Y C X', s € C such that H; = H and [Y] converges to the reduced
cycle [Yp] of the image of a standard embedding H of X into X’. We may take Hy to be v: X — X’
so that Yy = X. We assert that X C X’ is infinitesimally rigid as a complex submanifold.

By Lemma 5.1 in [M19], it suffices to check that the restriction map r: I'(X',TX') —
I'(X,TX'|x) is surjective. Moreover by the scheme of Section 6 of [M19], it is enough to show that
I'(X, Nx|x) is an irreducible representation of Aut(X). Since Nx|x- is a homogeneous vector bun-
dle with the fiber A2U* which is an irreducible homogeneous vector bundle over SGr(n — r, C*"),
by the Bott-Borel-Weil Theorem, X C X' is infinitesimally rigid.

Since X is infinitesimally rigid, there exists € > 0 such that for any s € C satisfying |s| < €, Y
must be the image =Z4(X) for some automorphism =, € G'. Fix a complex number s, such that
|so| < €. Since Yy, = @, (Y) for some @, € G', we conclude that Y = & (V) = .1 (Z,,(X)) =

S0

O(X) for © := ¢! 0 Z,) € G, as desired. O
5. RIGIDITY OF SUBGRASSMANNIAN RESPECTING HOLOMORPHIC MAPS

This section is devoted to prove the main technical result (Proposition that will be used
to show the rigidity of induced moduli maps. From now on, we denote by G and G’ the groups of
automorphisms of D, (X) and D, (X'), respectively for r,r" > 0.

We restate the definition of subgrassmannian respecting holomorphic maps as given in Definition
1.4 in a local form.

Definition 5.1. Let U C D,(X) be non-empty connected open subset. A holomorphic map
H:U — D.(X') is said to respect subgrassmannians if and only if for any Z, C D,(X) such that
UNZ, # () and for each irreducible component W of UNZ,, a € A, there exists Z, (o) C D (X')
such that

(1) H(W?) C Zy(a) and

(2) H|we extends to a standard embedding from Z; to Z./(4).

Definition 5.2. A holomorphic map H: Gr(a, W;) — Gr(b, W) is called a trivial embedding if
there exist a subspace Wy C W5 of dimension b — a and a linear embedding +: W; — W, such
that H(V) = Wy @ «(V). Let N C Gr(a,W;) be a complex submanifold of some connected open
subset U C Gr(a, W7). A holomorphic map H: N — Gr(b, W3) is called a trivial embedding if H
extends to Gr(a, W;) as a trivial embedding.
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Proposition 5.3. Let P € ¥,.(X), P' € ¥.(X’) and let H: (D.(X),P) — (D (X'),P’) be a
germ of a subgrassmannian respecting holomorphic map such that

H(Z,(X)) € Sp(X))
and
H.(TpD. (X)) & Tp X (X").
Suppose that the rank of Z,, T € Do(X), is greater than or equal to 2, then H is a trivial embedding.

The proof will be given in several steps. First, we will show that the 1-jet of H coincides with
a trivial embedding and H maps projective lines to projective lines. To be precise, we will prove
Lemma . Note that if X is of type I or type II, then for any projective line L C D,(X),
there exists a subgrassmannian Z, such that L C Z,.. Since H respects subgrassmannians, H
sends projective lines to projective lines. For the type III case, we need the following lemma which
concerns real hyperquadrics with mixed Levi signature in Euclidean spaces and holomorphic maps
which transform germs of complex lines on such real hyperquadrics to one another. The lemma will
lead to line-preserving rational maps between projective spaces. For a rational map F': V --» W
between two projective manifolds, writing A C V for the set of indeterminacies (which is of
codimension > 2), we will write F(V') := F(V — A) for the strict transform of V' under F. We
have

Lemma 5.4. Let ¥ C C", n > 3, be a Levi nondegenerate real hyperquadric with mixed Levi
signature passing through 0 and let H: (C",0) — (CY,0) be a germ of immersive holomorphic
map which maps connected open pieces of complex lines in i into complex lines. Then, H extends
to a projective linear embedding H : P — PV

Proof. We will prove the lemma in two steps. First we will show that H maps any (connected
open pieces of) complex lines in C" into complex lines. Then, using this property we will show
that H extends to a projective linear embedding.

For a point P € 3, let €p(X) be the set of all complex lines in ¥ passing through P. We regard
¢p(X) as a subset of the projectivised complex tangent space ]P’T};OZ, of complex dimension
=n —2 > 1 since n > 3 by hypothesis, by identifying a complex line L € ¢p(X) with [TpL].
Since Y has mixed Levi signature, ¥p(X) is a nondegenerate real hyperquadric in ]P’T};OZ. Choose
a representative of H denoted again by H and let Dom(H) be its domain of definition. Let
P € ¥ N Dom(H). By the assumption on H, for any L € ¢p(X), H(L N Dom(H)) is contained in
a complex line. Hence for any k > 1,

J L j N
Spanc{jp (Hy)} := Spanc { (ddZL (0), -+, ddg.L (0)) , 1<) < k}
is of dimension < 1, where H(() := H(P + (v) for 0 # v € TpL and ¢ € C. Since the space
Spanc{j% (H1)} depends meromorphically on L € PTp"Y and €p(X) is a nondegenerate real
hypersurface in PT};’OZ, for each integer k > 1 the dimension of Spanc{j% (Hy)} is less than or
equal to 1 for all L € IP’T;OZ. Hence for all P € ¥ N Dom(H) and for all L € ]P’T]i’OZ, H maps L
into a complex line.

Now let T" be a germ of a nonvanishing holomorphic vector field at 0 € C" such that Re(T")
generates a one parameter family of CR translations on ¥ and let {&., € € C} be its flow for
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a sufficiently small complex number . Let P € ¥. Since & for sufficiently small ¢ € R is a CR
automorphism of ¥, for all L € IP’TII;OZ, H maps &(L) into a complex line. Since the map

t € C = Spanc {jg,(p) (Heun)) }
is meromorphic and R C C is a maximal totally real submanifold, we obtain
dim Spanc {j¢,p) (Hey) } <1, Vk>1.

Therefore for sufficiently small ¢ € C, H maps &(L) into a complex line.

Let M(P™) be the set of all projective lines in P". Then M(P") is a finite dimensional complex
manifold. We claim that {&.(L) : P € %, L € €(T5"%), € € C} is an open set in M(P?), where
%(T}’OE) is the set of all projective lines passing through P and tangent to > at P. Let €p be
the set of all projective lines in P" passing through P € P". Then

becomes a complex manifold with double fibration over M(P") and P". Let 7 : € — M (P™) be the
natural projection. Since T is transversal to Ty 'S, 7' ({&.(L) : P € B, L € €(Tp"Y), e € C})isa
smooth fiber bundle over an open neighborhood of 0 € C" with respect to the natural projection to
P*. Hence, to prove the claim it is enough to show that 7! ({@(L) PeX Le %(T};OZ), €€ (C})ﬂ
%o is open in 6y. We may assume that on a neighborhood of 0 € C”, ¥ is locally defined by

V4 n—1
Imw=> |5 = Y |z =:(z2)
Jj=1 j=0+1
and 5
T=—
ow
so that

E(z,w) = (z,w+¢).
As in the above, we identify 6, with P"~!. Choose a point P = (2, v/—1{20, 20)¢) € ¥ away from
0. Then T3°Y is defined by

ow = 2v/—1(0z, zp)s-
Choose a complex line L given by
P+C<2072V _1<ZO7ZO>K)7 CGC
passing through P and tangent to ¥ at P. Then the parallel translation L, of L given by

L + (0, V _1<ZO7 Zo>g)
passes through 0 € C" and
TOL1 = (C(Z(), 2\/ —1<Zo, Zo>g).

Now consider a one-parameter family of points P, := (tzo, vV —1(t20,t20)¢) € X, t € C. Then by
the same argument, the family { P} generates a family of lines {L;} passing through 0 such that

T()Lt = (C(Z(), 2\/ —1<Zo, tZ()>g).
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Since zg and t are arbitrary, the conclusion follows. Since H maps (connected open pieces of)
projective lines in {£.(L) : P € X, L € ‘K(T};O ), € € C} into projective lines, as a consequence,
H maps any (connected open piece of) complex line in P™ into a projective line.

Next, we will show that H extends to a projective linear embedding. Since H is locally immersive
at 0 € C", we may assume that

H,(T,C") = {(z,0) € C" x C" ™} c T,C" = V.
Since H maps complex lines into complex lines, this implies
HU) C {(z,0) € C" x CN_”}.

Then we can apply Proposition 2.3.3 in [M99, (2.3)] to show that H extends rationally to P, and
the extended rational map will still be denoted by H: P* --» PV, Denote by E C P" the set of
indeterminacies of H, and by R® C P* — E the subvariety consisting of all points y € P* — E such
that dim(dH (y)) < n. Then, R := R0 C P" is a subvariety. Write B := RUFE C P" and pick 2, €
P" — B. Let @ C PV be the projective linear subspace such that Ty ,)(Q) = dH (T, (P")) = C™.
Since H maps the germ (¢;xg) of a projective line ¢ at x to the germ (A; H(z)) of a projective
line A C PV at H(zy), H(P" — B) is an open subset of @ containing H(xq), Q@ = H(P"). For
the proof of Lemma , we may take Q = P* C PV, n = N > 3. (We note that the rest of the
arguments work also for n = N = 2.)

For a line-preserving surjective rational map H : P* —-» P*, R* C P* — E is the ramification
divisor of H|pn_p. We call R = RO C P" the ramification divisor of H. The rational map H

being the meromorphic extension of a line-preserving biholomorphism H : U =5 V between

certain connected open subsets U,V C P", we can apply the same argument to h= : U =5V and
conclude that H : P" --» P™ is birational. Hence, for any rational curve ¢ such that ¢N(X — B) # 0,
the holomorphic map H|,_p extends to a biholomorphism from ¢ onto a projective line A C P™.
Hence, by [M99, Proposition 2.4.1] and its proof, R = () and H : P =y Prisa biholomorphism.
This completes the proof of Lemma [5.4] O

Lemma 5.5. Forr > 1, let H: U C D, (X) — Dy (X') be a subgrassmannian respecting holo-
morphic map defined on a connected open set U such that U NY,.(X) # 0. If
HUNY.(X)) C X0 (X))
and
H(U) ¢ % (X), (5.1)
then for each P € U, there exists a trivial embedding H = Hp: D.(X) = D.(X') such that

H.(TpD, (X)) = H.(TpD,.(X)).
Moreover, H maps complex lines to complex lines.
Proof. In the proof, we only consider the case when X = LGr, and X' = Gr(q¢,p’) so that
D (X) = SGr(n —r,C*) and D.(X') = Gr(q¢ — r',C”*+¢). The same argument can be applied
to other cases.

For a Lagrangian subspace V; in (C*", J,,), choose a basis {ey, ..., e, } of C*" such that {e; +
€nily- -, 6n + €2,} 18 & basis of Vy and 7 € Dy(X) such that

Z, =Gr(n—r,Vy) C D.(X).
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At a point Spanc{e; + €pi1, -+, €n_r + €2, } € Z., we may take a local coordinate system of Z,
such that Z, is locally given by {(z) : z € M®(r,n — r)}. Since H respects subgrassmannians, H
restricted to Z. is a standard embedding. Hence we may assume that

H|ZT(33) =Wo@ (z) C Wy & Gr(n—r, W) (5.2)

or
H 2,

for some subspaces W, and W.
Suppose (5.2)) holds. Choose V' € X such that dimVoNV =n—1>n —r. Let

Z,=Gr(n—rV).
Without loss of generality, we may assume
VoNV = Spanc{e; + €pq1, -, €n1+ €2n_1}-
Since Z, N Z, = Gr(n —r, Vo N'V) and H restricted to Z, is also a standard embedding, by
with © = ( v

(z) =Wo @ (2') C Wo @ Gr(r, W) (5.3)

0 ) 2’ € M®(r — 1,n —r), we obtain

H(Z,) cWo® Gr(n—r,W)

for some W such that W3 N W is of codimension one in W and W. Since D,.(X) is connected by
chain of Z,’s with rank Z, > 2, we obtain

H(D,(X)) C Wy @ Gr(n —r, Wg").

Let
X":=Gr(¢", WOL),

where ¢” = ¢ — dim W,. Then we obtain
H(D, (X)) C Wy & Dyu(X") (5.4)
where r” satisfies
Do (X") = Gr(n —r,W§) =2 Gr(n —r,C™), m = dim Wg".

We will replace X’ and " with X” and r”, still using the same notation.
Suppose (5.3) holds. Similarly, for each Z,, there exist U,,V, C W] with dim V, = n such that

H(Z.)=U; & Gr(r,V;) (5.5)

and there exists an (n — r) dimensional vector space L independent of 7 such that any Gr(r,V;)
contains a projective space of the form Gr(1, L + e,) for some vector e,. Let

Uy = ﬂUT.

Since H(Z;) € ¥,(X’) for all Z.CX,(X), Uy @ L is Iy g-isotropic. Choose the minimal vector
space Vj that contains UT U, ® V.. Write

% = UO S¥ L S¥ ‘/17
where V; is orthogonal to Uy @ L with respect to I,y ,. Then
H(D. (X)) CcUy® Gr(r",L® V1)=Gr(n—r,C™), r"=dimVj,
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where 2 in a big Schubert cell is given by (x) — (2'). On the other hand, since H(P) € 3,/(X’)
for P € ¥,.(X), Vi should be I, g-isotropic. Therefore H(D,(X)) C 3,/(X’), contradicting the
assumption on H.

From now on we assume and hold. Choose local coordinates (x;y; z) of Gr(n—r, C*")
and (X;Y;2) of Gr(n —r,C™) such that X,(X) is defined by (3.2), and ¥, (X') is defined
locally by

Ly = XX +YY + 277 =0, (5.6)
where Y € M®(n —r,n—r), X € M%(a,n—r), Z € M®(b,n —r) for some a < b. For i,j =
1,...,n —r, define

0, = Zy,idykj - Zx/da:/ + Zz/dz/
k=1 =1 =1
and

- a b
0,/ =Y "vidy,’ - > XjdX,)+> Zjdz, .
Then by Section [3, # and © arg_clontact forrrfs ;f ¥(X) anfi IZT/ (X"), respectively which define
their CR structures. Since the CR bundles over ¥,.(X) and %,/ (X’) are defined by
0 =0, ©7=0, i,j=1,....,n—r
we may assume that for a fixed reference point Py = (0; 1,,_,;0) € ¥,.(X),
TS (X) = {dy,” =0}, Tylp ) Sw(X) ={dY;" =0 i,j=1,....n—r}. (5.7)
Since H preserves the CR structure, we obtain
H*(©,/)=0 mod 6. (5.8)
We will omit H* in and the following equations if there is no confusion. Let

gk
By differentiation, we obtain

S v a3 (aXT ndX, —dZi ndz,) ) = N wf (dyf ady,] - deF ade] + deFAdz])
k L Gk bom
(5.9)
modulo #. Choose a maximal subgrassmannian N C X,(X) passing through P, € 3,(X). By
(3.1f), we may assume that

N={(z;L,—r;z):x € M®(r,n —1)}.
Since H maps %, (X) into 3,-(X’), H maps N into a maximal complex manifold in 3, (X"). Then

by (3.1) and (5.6), we may assume

N':=H(N) C {(X;]n_r; < )0( )> X € Mc(a,n—r)}.

Since H respects subgrassmannians, by ([5.2)),

st = (3 )i ()
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up to Aut(X, (X)) and Aut(3,/(X’)). Define
O =dz) —dx), (=1,...r
and . . .
V) =dz) —-dX,/, L=1,...,a,
U/ =dz), L=a+1,...,b
Since N and N’ are integral manifolds of ©» = 0 and ¥ = 0, respectively and H: N — N’ is the

identity map, we obtain
V=0 mod 8,y (5.10)

and for y=1,...,n—r, , .
dX‘j:d[lféj mOd 0,¢, gzla"‘7r7

dXLj =0 mod#,yp, L >r.
Then on T}D(’)OET(X ), (5.9)) can be written as

Z‘Ij_el/\ dz,! +dz, AN, = Z ujk <w_/“ A dx/ +dxz,f A wzj) . mod ¥ A (5.11)

(=1 §.k,tm

Since the CR structure of ¥, (X) is bracket generating, the right-hand side of (5.11]) contains das/
for j > 1 and dz,* for k > 1 unless ujk # 0. Therefore we obtain

@11 - uglla
where u = u,! and together with (5.10) and Cartan’s lemma,
Ut =wp,t modf, (=1,...,m
Suppose u = 0, i.e.,
<I>11 =0.
Since j = 1 is an arbitrary choice, we may assume
J — -
0,/=0, j=1...,n—r
Then we obtain '
U7 =0, mod¥0, Vjl
and by differentiating
0,"=0 mod 0
and substituting ¥ / = 0 modulo #, we obtain
0,/=0, uj=1,...,n—r.

In particular, H (X, (X)NU) is an integral manifold of © = 0. Hence there exists a maximal complex
manifold M C ¥,/(X’) that contains H(X,(X) N U). Since H is holomorphic, by Lemma [3.8] we
obtain

H,(TpDy(X)) = H(TpS(X)) + JH,(TpE(X)) C TymyM, VP € S(X)NU.

Hence we obtain
HU)c M cC 2.(X),
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contradicting (5.1)). Therefore we obtain u # 0 and after dilation (See Appendix), we may assume
that © = 1 on an open set. Since # and © are Hermitian symmetric and H : N — N’ is the
identity map, by continuing the process, we obtain

and A ‘
U/ =4, modf, (=1,...,r (5.12)
Fix j = 1. Then after rotation (See Appendix), we may assume that
dX,! —dz,) =dZ,) —dz,"=0 mod 6, (=1,...,r, (5.13)
dX;' =dZ,' =0 mod 0, {dz,* dz," : k>1}, L>r (5.14)

Since H respects subgrassmannians, by restricting H to subgrassmannians of the form {(z; I,,_,; Uz) :
x € M®(r,n —r)}, where U is an r xr symmetric matrix, (5.13]) implies that forall j = 1,...,n—r,

ngj _ dl’/ — dZeJ' _ dZej =0 mod#, (=1,...,r (515)

Moreover, since H sends all rank one vectors in subgrassmannians to rank one vectors, ([5.15)

applied to (5.14]) implies
dX;! =dZ,) =0 mod 6, L >r.

Since H respects subgrassmannian distributions, this implies that for all j =1,...,n —r,
dX; =dZ =0 mod 0, L >r. (5.16)
Since dx/ , dz/ and dX Lj ,dZ Lj form coframes of T;(;OE,«(X ) and T30, ' %,/(X"), respectively, (5.15)

H(Po)
and (.16) imply
H(TH'Sr (X)) = Tyilp Er

T T H(P)
where
S, = EMX’)Q{(( 3 > ;Y ( S )) cx,2 € MC(rn —7), yEMc(n—r,n—T)}.
Since n—r > 2, ¢ and L are independent of the choice of j = 1,...,n—r, by the same argument

of [Ki21], we obtain
dX,) —daz/ =dZ] —dz + &40, =0, (=1,...r,
for some smooth functions &,* and
dX,) =dz/) =0, L>r.

After a frame change of the form @D in Appendix, we obtain

dX,” —dv/ =dz, — dz =dX; =dz,) = 0.
In particular, together with ,

Tipy H(EH(X)) = dH(Tp, 20 (X)) = Trr(pp) -

More generally, we can choose smooth functions g: £,.(X) — G N Aut(X,(X)), ¢ 2. (X) —
G’ N Aut(X,/(X")) such that

dH o g(P) = ¢'(P)old, VP € %,(X). (5.17)
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Since ¥,.(X) is a generic CR manifold, we obtain
TpD,(X) = TpS,(X) + J(TpE,(X)).
Therefore ((5.17)) implies that
H.(TpD,(X)) = Tupd' (P) - D,, P €%, (X), (5.18)

where

ﬁpz{((‘é);y;(é)) cx,z2€ MS(r,n—7), y€ MS(n—r,n —7), y—yt+xt2—ztm:0}.

Since the CR structure of ¥,.(X) is homogeneous, the same computation holds for a general point
Pe ¥, (X),ie., H(TpD,(X)) is contained in the G'-orbit of TpD, for all P € ¥,(X). Since H is
holomorphic, G acts holomorphically on T'D,,(X") and ¥, (X) is a generic CR manifold in D, (X),

we obtain that for all P € D,(X), TypyH(D,(X)) is contained in the G’-orbit of TpD,, i.e.,
TraeyH(D(X)) = Ty H(Dr (X))

for some standard embedding H.

Now fix P € ¥,(X) and choose a maximal rank one subspace M C D,(X) passing through
P. By (5.17), H sends rank one vectors in Tp%,(X) to rank one vectors and hence all vectors in
H.(TpM) are rank one vectors. Since H is holomorphic and ¥,.(X) is nondegenerate, we obtain

[H.(v)] C Cupy(Gr(n—r,C™)), YveTlpM
Since
rank Gr(n —r,C™) >rank Z, > 2, 7€ Dy(X)
and dim M > 3, by [CHO04], we obtain
HMNYE. (X)) c M'NE.(X)

for some maximal rank one subspace M’ in Gr(n — r,C™). Furthermore M N %,(X) is a non-
degenerate hyperquadric in M with mixed Levi-signature and H maps every projective line in
M N%,.(X) into a projective line, by Lemma H restricted to M is a projective linear map. In
particular, H maps projective lines to projective lines. O

Lemma 5.6. For X = LGr,, and X' = Gr(¢,p') or X = OGr,, and X' = OGr,,, assuming r > 1
let U C D.(X) be a connected open set and H: U — D,(X') be a subgrassmannian respecting
holomorphic immersion such that

H(S.(X)NU) C S (X')
and
HU) ¢ .(X).
Then there exists a subgrassmannian M of D,/ (X') isomorphic to Gr(n —r,C*") if X = LGr,,
isomorphic to OGr(2[n/2] — 2r,C*) if X = OGr,, such that H({U) C M.

Proof. First we assume that X = LGr, and X’ = Gr(¢,p') so that D.(X) = SGr(n — r,C*")
and D,.(X') = Gr(¢ —r',CP*7). In the proof of Lemma , we can choose a subgrassmannian
of D,/(X') isomorphic to Gr(n — r,C™) that contains H(D,(X)). Hence we may assume that
Dy(X') =Gr(n—r,C™).
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Let
Z = H(D.(X)).
For P € Z, choose a unique minimal subgrassmannian Mp passing through P such that
TpZ CTpMp. (519)
By Lemma [5.5, Mp is of the form Gr(n — r, Vp) for some Vp C C™ with dim V' = 2n. Therefore
we can choose a Grassmannian frame Z,...,Z, ., X, 11, ..., Xy, of Gr(n — r,C™) such that
Spanc{Zi,...,Zpnv} =P
and

P+ Spanc{ X, _,11,..., Xon} = Vp.
Let {u'} be a collection of one forms such that

dZ, = p ' Xy mod P.

Then by ,
TpZ C{p ) =0,H=2n+1,... m}.
Furthermore, since
TpZ = H.(TpD.(X))

for some standard embedding H : D,.(X) — D, (X’), we can choose Xy, H =n—r+1,..., X,
such that

TpZ ={p, =0,H=2n+1,....myn{p, " —ps " =0,0,5=1,...n —r},
Since we choose a Grassmannian frame, we obtain
dp = p, K AQE  mod uﬁH, b=1,....n—r
for some one forms Q7 such that
dXg = Q¥ Xy mod P.

Therefore on T'Z, we obtain

2n
0= Y purref

k=n—r+1
Since pf, k =n—r+1,...,2n are linearly independent for all fixed o, by Cartan’s lemma we
obtain
Q=0 mod {uf,t=n—r+1,...,2n}.
Since k is independent of a =1,...,n —r and n — r > 2, we obtain

Ot =0
which implies
dZy =dX; =0 mod Vp, a=1,...,n—7r, j=n—r+1,...,2n,

i.e., Vp is independent of P.
Now assume that X = OGr, and X’ = OGr, so that D,(X) = OGr(2[n/2] — 2r,C*") and
D (X") = OGr(2[n' /2] — 21", C*"). Since we may regard OGr(2[n’ /2] —2r',C*"') as a submanifold
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in Gr(2[n’/2] — 2r',C?""), by the same argument as above, we obtain that there exists a subspace
W C C* of dimension 2n such that

H(D,(X)) C Wy & Gr(2[n/2] —2r,IW)

for some Wy. Let a := dim(Wy), b := (2[n/2] — 2r) so that a + b = 2([n’/2] — 2r"), and let the
base point P correspond to Wy & Ey, where [Ey| € Gr(b,W). In what follows let V' denote any
element in Gr(b, W) such that Wy & V' € H(D,(X)). Since

H(D,(X)) C D.(X') = OGr(2[n'/2] — 21", C*),

we have
Sn/<W0 &} V/; Wo D V/) =0

whenever Wy @ V' € H(D,(X)). In particular, Wy € C*" is an S,,-isotropic a-plane, V' C C?" is
an S,y-isotropic b-plane, and Wy and V' are orthogonal with respect to S, i.e., S(Wy, V') = 0. We
claim that actually S(Wp, W) = 0. From Lemmal5.5|it follows readily that S,|w is nondegenerate.
Suppose there exists some w € W such that w is not orthogonal to W with respect to S,,. Then, for
any S,-isotropic n-plane V" in W containing w S(Wy, V") # 0, so that Wy @ V"] & OGr(2[n’ /2] —
2r',C*"), hence [Wo @ V"] ¢ H(U). Define .7 := (Wo@OGr(n—r, W))NOGr(2[n' /2] —2r',C>™).
Then, .¥ C Wy & OGr(n — r,W), so that dim(H(U)) < dim(¥) < dim(OGr(n —r,W)) =
dim(U), a contradiction since we know that H is a holomorphic immersion. Our claim follows,
and we conclude that H(U) is an open subset of the subgrassmannian M := Wy ® OGr(n —r, W)
isomorphic to OGr(2[n/2] — 2r,C*"), as desired. The proof of [5.6]is completed. O

Proof of Proposition[5.34 If X and X’ are of the same type, then as in the proof of Lemma 5.6
there exists a subgrassmannian Y in X’ which is biholomorphic to X such that H(D,(X)) C
D,(Y). Hence we may consider H as a map from D,(X) into D,(X). By Theorem 9 in [M08b]
and Lemma H is an automorphism of D,.(X). Hence we obtain the proposition in these cases.

From now on we assume X = SGr(n — r,C*") and X’ = Gr(n — r,C?*"). By Lemma [5.5 we
may further assume H(0;1,—,;0) = (0;1,—,;0) and dH|«,1,_,.0) = Id. Since by Lemma H
is a rational map preserving minimal rational curves, H is a holomorphic immersion into X’ by
Proposition 4.10l Then the following lemma and Proposition [4.13| will complete the proof.

Lemma 5.7. There exists a family of holomorphic maps {H,}: SGr(n—r,C*") — Gr(n—r,C*")
with s € C* which converges to a standard embedding on a big Schubert cell W = M©(n+r,n—r)
as s tends to 0 with respect to the compact-open topology. Moreover, there exists a C*-action ¥ :=
{U,}secr on Gr(n—r,C?") such that U fizes (0; I,_,;0), preserves SGr(n—r,C*") C Gr(n—r,C**)
as a set and such that Hy(z;y; 2) = \I/%(H(\Ds(x; y,2))) — (0; I,,_; 0).

Proof. Choose local coordinates (x;y;2) of Gr(n — r,C*") defined on a big Schubert cell W =
Mg,y C Gr(n—r,C*) with 2, 2 € M®(r,n —r),y € M“(n —r,n —r) so that SGr(n—r,C*")

is defined locally by
y—y +atz— 2 =0.
Let (X;Y; Z) be local coordinates of Gr(n—r, C*") such that 3, (Gr(n—r,C?")) can be expressed
by
1, ,— X' X+Y'Y+Z"Z =0,
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where Y e MY .. .. X e M, ., Ze M, . Let (Hx, Hy, Hz) be the coordinate expression of
H with respect to (X;Y; Z). Then by Lemma [5.5] we may assume
H = (2;y;2) + O(||(z5y — Ln—r; 2)[1*). (5.20)

Moreover, since we have H(3,(X)) C X,(X’), we obtain
—I, . —HyHx+HyHy+H;H; =u- (=1, — 'z +y'y+ 2"2)
for some C¥ function u. Hence by power series expansion,
Ol +181 T olel+18l g, le+18l ir,  plel+IBl
0=-Hy———+Hy—— + H;, = 0.21
X 9r0928 iy 0x*02P +Hz 0x*0zP 0x®02P (5.21)
at (0; I,,_,;0) for any multi-indices «, (. Let
Hy =1, + jj[Y =l + Z Bawau
a1
with w = (x,y — I,_,, z) be the power series expansion of Hy at (0;[,_,;0). Then (5.21]) implies
Hy =y — L + O([ (2, 2)I° + ly = Ln—|1*)- (5.22)
Now for 0 # s € C, define a holomorphic map H,; on X whose restriction on the big Schubert
cell M€ N SGr(n —r,C?) is given by

n+r,n—r

1 1~ 1
(o0 2) = (D + 5y ) L)),

where wy = (sz;s*(y — I,_,);sz). In particular, H,: SGr(n — r,C*") — Gr(n — r,C*) is a
holomorphic immersion. Furthermore, by (5.20)) and (5.22), we obtain

Hy(z;y;2) = (7395 2) + O(s),

implying that H, converges uniformly to Ho(x;y;z) := (x;y;z) on any compact subset K C
MC(n+r,n—r)NSGr(n —r,C") as s tends to 0.

Defining U, (z;y; 2) := ws + (0; I,,_,; 0) = (sx; s*(y — I,,_.); $2) + (0; I,,_; 0) on the big Schubert
cell W, for s € C* we have H(v;y;2) = Vi (H(Vs(25y;2)) — (05 [,—r; 0). It is clear that ¥ :=
{U,}secr fixes (0; 1,_,; 0) and that it is a C* action on W. Furthermore, from the defining equation
y—y'+atz—ztx = 0 for SGr(n—r, C*)NW, it follows readily that ¥ preserves SGr(n—r, C*)NW
as a set. To complete the proof of Proposition it remains to check that each ¥, extends to an
automorphism of Gr(n — r; C*") yielding hence a C*-action on the latter manifold.

Writing O,(z;y; 2) = (sx;8%y;52) we have Uy(x,y;2) = O (zy — Lip;2) + (051, 2) =
Tp,0Os0T_p,, where Py = (0; [,,_,; 0) and Ti(w) = w+Q, for Q € W, is a Euclidean translation
on W. Recall that G’ = Aut(Gr(n —r, C*)). With respect to the Harish-Chandra decomposition
g = m'T @ ¥C ®m'~ of the Lie algebra g’ of ¢/, a Euclidean translation in Harish-Chandra
coordinates extends to an element of the commutative Lie subgroup M'T = exp (m'*) C G’, thus
{U}secx is a conjugate of {O;}sec+ in G’ and it suffices to check the latter is a C*-action. If in

x

place of the coordinates (z;y; z) we use the matrix form I' = (y) € M€(n+r,n—r) as coordinates
z

for points on W, then O,(T") = D,T, for some invertible (diagonal) matrix Dy € MC(n+r,n+7).
Now K'C = exp (¥C) consists of invertible linear transformations I' — AI'B where A resp B is an
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invertible (n + 1) x (n 4 ) resp. (n —r) x (n — r) matrix, hence ©, € K’ C G’ for s € C*. As a
consequence, © = {O,},cc+ and hence ¥ = {U,} ¢+ are C*-actions on Gr(n —r,C*"), as desired.
The proof of Proposition is complete. O

We note that in standard notation the C*-action © is generated by an element L of the Cartan
subalgebra b’ C g’ = sl(2n, C) such that ad(L) preserves the Lie subalgebra g’ C g, g’ = sp(n, C)
and such that the restriction of ad(L) to sp(n,C) defines on the latter the structure of a graded
Lie algebra associated to the marked Dynkin diagram (C,,, ay,—,), in the notation of [Ya93|, which
is the graded Lie algebra structure on sp(n, C) with parabolic subalgebra p underlying the rational
homogeneous manifold G/P = SGr(n —r,C*"). Thus g =g 2D g_1 D go D g1 D g2, To(G/P) =
g/p = g1 D g2, [L,v1] = vy for v, € gy and [L, vo] = 2v9, which explains the different exponents
in O,(z;y;2) = (s;5%y; sz). Thus ad(L)], defines the standard C*-action © at 0 = eP € G/P
with 0 as the isolated fixed point serving as a l-parameter group of dilations which replaces
the 1-parameter group of dilations in the case of irreducible Hermitian symmetric spaces of the
compact type in [M19] defined by the Euler vector field and expressible in terms of Harish-Chandra
coordinates as scalar multiplications O(z) = sx for s € C.

6. INDUCED MODULI MAP

We start with some relevant general facts about subvarieties of irreducible Hermitian symmetric
spaces of the compact type M. A characteristic subspace I' of M is an invariantly geodesic complex
submanifold of M according to [MT92] in the sense that it is totally geodesic in (M, s) with respect
to any choice of Kahler-Einstein metric s on M (Section [2.1)). Equivalently, fixing a big Schubert
cell W, M = C™ in terms of Harish-Chandra coordinates, S C M, 0 € S, is invariantly geodesic
in M if and only if for any v € P, v(P) N W is a linear subspace of C™. It follows that the set of
invariantly geodesic complex submanifolds of M is closed under taking intersections. In the case
where M is the Grassmann manifold Gr(a, b), 0 = [V], writing To(M) = V;@C*™/V, =: AQB, for
an invariantly geodesic complex submanifold S C M passing through 0 we have Ty(S) = A’ ® B,
where A’ C A, B’ C B are linear subspaces. Given any family {S,} of invariantly geodesic
complex submanifolds of Gr(a,b), To(S,) =: Ay ® By, the intersection S := () {S,} is determined
by Tp(S) = A® B, where A :== ({A.}, B :=({S.}. S C M is a subgrassmannian. In the case
of M = LGr,, writing Ty(M) = S%V,, a characteristic subspace I' passing through 0 € LGr,, is
determined by Ty(T') = S?A for some linear subspace A C Vj, hence the intersection of any family
of characteristic subspaces is necessarily a characteristic subspace. In the case where M = OGr,,,
writing To(M) = A2V}, a characteristic subspace I' passing through 0 € LGr, is determined by
To(T') = A? A for some linear subspace A C V} of even codimension, hence the intersection S of any
family of characteristic subspaces passing through 0 € M is determined by Ty(S) = A?A. S C M
is a characteristic subspace if and only if A C V4 is of even codimension, otherwise embedding
OGr, into OGr, 1 := M’ as usual, S C M’ is a characteristic subspace.

Let now € and ' be irreducible bounded symmetric domains of type I, II or III and let
f:Q — Q' be a proper holomorphic map. In this section, we define induced moduli maps f¥, ff 1

2

fyand f, on D,(X), D, 1(X), D,(X) and D, 1(X), respectively.
Let r > 0 be fixed. Consider a manifold

U.(X) = {(P,o) € X x D,(X): P € X,} C X x D,(X).
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Then, there is a canonical double fibration
T U (X) = X, m U (X) = D(X).

Define j: U.(X) — G(n,,TX) with n, = dimTpX, by j(P,0) = TpX,, where G(n,,TX) is a
Grassmannian bundle over T'X. Then, j is a G-equivariant holomorphic embedding such that
J(U(X)) = NS (X).

We will define f? and ff; as follows. For each o € D,(Q2) and v € DTé(Q), define f¥(o) and

Fi2 () by
/ R / ! L /
Xig o =(1X, and Xff%(v) = (XY, (6.1)
O—/ ’ ,y/

where the intersection is taken over all characteristic subspaces X!, of X’ containing f(£2NX,) and
X!, of X’ containing (2N X)), respectively. We remark that since the intersection of subgrass-

mannians is also a subgrassmannian, the maps f* and ff , in (6.1]) are well defined. Furthermore,
2

since f is a proper holomorphic mapping and hence characteristic subdomains of €2 are mapped to

characteristic subdomains of Q' ([Ts93, Proposition 1.1]), the ranks of X }u @) and X }’C,j ) should
r\g r1/2

be strictly less than the rank of X’.

Then, there exists a flag manifold F(a,,b,; Vy/) such that f¥(o) € F(a,,b,;Vx:) for a general
member o € D,.(Q)), where V. is a suitable vector space according to the type of X', see Section .
Denote this F(a,,b.; Vx/) by F; (X'), where i, is defined by i, := ¢’ — a, if X’ is one of Gr(¢,p’)
and LGry, i, :=2[n'/2] —a, if X" is OGr,y. If X" is one of Gr(¢,p’) and LGry, then i, < ¢ —1.If
X'is OGryy, then i, < 2[n'/2]—2. Similarly, we define F(a, 1,b, 1; Vx/) and denote it by F; | (X'),

)

T 0T,
is defined by 4,1 = 2[n’' /2] — a, 1. Define
Fi, () :={o" € Fi (X'): X5 €Y # 0},

1
3
where 7,1
2

Fipap() :i={0" € Fi

Lr1/2

(X7): Xo N # 0},

Fi, (Sp(X") :={c" € F;,(X'): X, N S,,(X") is open in X/, }.
For the definition of S,,(X”), we refer the reader to Section [2.1] pp. 8.

Lemma 6.1. f*: D,.(Q) — F;, () and ff;3 D,1() = F; () are meromorphic maps.
’2 ™2

4

Proof. Since the proof for the map ff , is similar to that for f# we will only give a proof for f%.
2
Consider a map F, : U.(Q2) — F;, (X') defined by
Fr(P,o) = fi(o).
Suppose F,. is a meromorphic map. Then by taking a local holomorphic section of the fibration
Ty : U (Q) — D, (), we can complete the proof.
Let
M ={(y,0") e X' x F, (X'):y e X_,}.
Then as above, there exist a double fibration
M= X' m M= F (X))
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and a holomorphic embedding of M into G(n!.,TX’) for n, = dim X/,. Hence we may regard M
as a closed submanifold of G(n!, T X").

We identify a small neighborhood of F in X’ as a submanifold in the matrix space via the
property Tp X’ C Hom(E, Vx,/E). Fix a point Py € Q and let E = f(F). Let (P,0) € U,(Q) for
P sufficiently close to F,. Consider a subspace

MPU := Spang {aa (f‘x) (P):|a] < k:} C Hom(E, Vx//E).
Then there exists an integer ko such that for a general pair (P, o),
(po) =Ny k= ko
Define
R(py) = Spanc {Im(A) tAe ./\/’(kf,’g)} . Kpo) = ﬂ {Ker(A) t A€ ./\f(]j?,ﬁg)} :
Then
GT’(p’U) = {A € Hom (E, R(Rg)) : Ker(A) D K(pﬁ)}
is a linear subspace in Hom(E, Vy,/E) such that

Ty X, = GT(po)

Fi(o)
for a general pair (P, ) by minimality of X } ‘o) Moreover the defining function of Gr(p ) depends
meromorphically on the ko-th jet of f at P and TpX,. Hence the closure of

{(P,o, f(P),Grps)) : (P,o) € Up(D\S(f])}

in U,.(£2) x M is an analytic variety whose defining function depends meromorphically on the ky-th
jet of f, where we let

S(fH) = {(P,0) : dim Gr(p,) is not maximal},
implying that F, is a meromorphic map. OJ
Lemma 6.2. f* has a rational extension f*: D,.(X) — Fi (X') .
Proof. By using Lemma the same proof of Proposition 2.6 in [MT92] can be applied (cf.
Section [2.1]). O
Since f? is rational and D,(S,(2)) is not contained in any complex subvariety, we obtain
Dom(ff) N'D,(Sk(X)) # 0,
where Si(X) is a G,-orbit consisting of boundary components of rank & in the boundary of Q C X

(see Section [2.1)).

Lemma 6.3. For each k > r, there exists my depending only on k such that
FH(D(Sk(X)) NDom(f7)) C Fi, (S (X))

Proof. We will prove the lemma when X is of type I. The same proof can be applied to other
types.

Let 0p € D,(Sk(X)) N Dom(f#). Then X,, NSy is a complex manifold in Si. Therefore we can
choose a totally geodesic subspace of Q of the form A% x Q such that X,, NS, = {to} x Qp for
some ty € (OA)9*. Choose a sequence t; € AT, j=1,2,..., converging to ¢y and let o; € D,.(Q2)
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be the characteristic subspaces such that X, N = {t;} x Q. Fix a point 2o € . By passing

to a subsequence, we may assume that f(¢;,z0), j = 1,2,..., converges. Since f is proper, the

limit y = lim f(¢;, %) is in the boundary of Y. Since (' is convex, there exists a complex linear
Jj—00

supporting function H of €’ such that h(y) = 0. Since h o f is bounded, we may assume that
hj:=hof | (%0 is a convergent sequence that converges to H. Since h; never vanishes while its
J

limit vanishes at x, H is a trivial function, i.e., cluster points of {f(¢;,x): j =1,2,...} for any
x € € is in the zero set of h. Since h is arbitrary, the limit set of f({t;} x €) should be in a
boundary component of {2’ which contains y. Let S,,(X’) be a boundary orbit containing y. Since
09 € Dom(ff), we may assume ff(o;) converges to f#(oo). Then, X } {(00) contains the limit set of
r\00
f({t;} x Qp), which implies f*(00) € F;, (S,,(X’)). In particular, we obtain
(o) € Fi (Sm(X"))
for a general member o € D,.(Si(X)) N Dom(f#)). By continuity of f*, we obtain
FH(D(Sk(X)) N Dom(f7))) € Fi, (Sm(X")).

Next we will show that m depends only on k. Since Si(X) is foliated by boundary components
of rank k, for any o € D,(Sy), there exists a unique p € Dy (Sk) such that X, NS, C X, N S.

Then f#(c) should be contained in f¥(z). Hence m depends only on k. O
Now consider all moduli maps
f1D(X) » F (X'), r=1,...,q—1.

Lemma 6.4. For eachr, we have i,_y < 1,. Furthermore, if X is of type II, then i,y < t,_11/2 < i,
forr=2...,q—1.

Proof. By definition, we obtain i,y < 4,. Suppose i,_1 = i,. Let 7 € D,_1(2) N Dom(frﬂ_l) and
let 0 € Z; = Z7. By Lemma [6.6] we obtain

fio) € 3}571(7),
which implies that as a subspace of Vy,
pr'o fi(o) Cpr'o fi_i(7),
where pr': F(a,b; Vx/) — Gr(a,Vx:) is a projection map defined by
pr'(V1,V2) = Vi
Since i, = i,_1 by assumption, we obtain
dimpr’ o f¥(o) = dimpr’ o ff_l(r)
and hence
pr'o fio) =pr'o fiy(7),
i.e., pr’ o f# is constant on Z,. Since D,(Q) is Z,-connected, we obtain that pr’ o f# is a constant
map. On the other hand, by Lemma [6.3] we obtain
FHDH(X)) N Fi (Sk(X")) # 0
for some k, which implies
pr'o fE(V) = pr' ()
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for some fixed p’ € F; (Sp(X')). In particular,
f(2) C Sp(X')
contradicting the assumption that f is a proper holomorphic map between Q2 and €V'.
Now suppose © = DI and by, 1= i.. Then by the similar argument given above, we obtain
that pr’ o f* is a constant map which is a contradiction. Suppose i,_; = i,_1,1. Then again by the

1.
2
similar argument, we obtain that pr’ o ff_l , is a constant map on D, _; %(Q) Since
i) ’

X,= |J Xo, neDn(X),
O’EQ}/Z

pr’ o f#is also constant which is a contradiction. 0
Recall that
D.(X) =pr(D,(X)), E.(X)=pr(D:(5.(X))),
where pr: F(a,b; Vx) — Gr(a,Vy) is a projection map defined by
pr(Vi, Vo) = Vi.

Define
D, (Sp(X)) = pr(D:(Sm(X)))
Define
Fi (X') = pr'(Fi, (X)),
Fi (X)) = pr' (Frap (X)),
F () = pr'(F, (),
Ei () o= pr'(F, L, (),
pr

Fi, (Sm(X7) = pr'(Fi, (Sm (X)),

where pr': F(a,b;Vx/) — Gr(a,Vx/) is a projection map defined as above. F; (X') is one
of Gr(a,,C"*), OGr(a,,C*), SGr(a,,C*") according to the type of X’ and F; ,,(X') is
SGT(aim/z,(CQ"/). Note that F; (X'), F; () and F; (S,,(X’)) can be expressed as subsets of
D (Y), D (Qy) and D, (S, (Y)), respectively for suitable Hermitian symmetric space Y and its
dual bounded symmetric domain €2y C Y. For instance, if X’ is one of the type I and III, then
we can choose Y to be X' itself and if X' is of type II and n’ — a, is odd, then we may regard
OGr(a,,C?) as a submanifold in OGr(a,, C***+2) = D,,(OGr,,) for suitable ' by embedding
OGr, into OGr,41 in a usual way.

Suppose X is of type II or III. Since pr: D,.(X) — D,(X) is a biholomorphic map, f’ :=
pr’ o ff o pr~1is a rational map on D,(X) such that

pr'o fi=flopr
If X is of type I, then we have the following lemma.

Lemma 6.5. Suppose i, = 1,1+ 1. Then there exists either a holomorphic or an anti-holomorphic
map f° defined on a neighborhood U of ¥,.(X) N pr(Dom(f%)), f2: U — F;, (X'), such that

b
pr'o fi = fopr
Moreover, f° has a rational extension to D,(X).
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Proof. By Lemma [3.4] we can define a smooth map by
fr=pr'o ffoprt: B,.(X) Nnpr(Dom(ff)) — F, (X).

We will show that f? is either a CR or a conjugate CR map. Then by Lemma and ana-
lytic disc attaching method ([BER99]), f> extends holomorphically or anti-holomorphically to a
neighborhood of %,.(X) N pr(Dom(f#)).

Fix a point Zy € X, N Dom(f?). Then (Zy, Zg) € D,(S,) N Dom(f*#). Choose an open neighbor-
hood U of (Zy, Z;) such that f! is holomorphic in U. Define F' on U by

F(A,B):=pr'o f*(A,B), (A B)eU.

Since
Z €Y, = ¢z :=(,Z) e Gr(qg—r, (CPT)*) ~ Gr(p+r,C"")

is a conjugate CR map, to show that f° is CR or conjugate CR, it is enough to show that F
depends only on A or only on B, respectively. Suppose that on U,

F(A,B) = F(A,C)

for all B,C having B N C of codimension one in B as well as in C. Since any two points in
Gr(p + r,CPT1) are connected by a chain B;,i = 1,...,¢y such that B; N B, is of codimension
one in B; and in B;;, F' is independent of B. Similarly, if

F(A,B) = F(C, B)

for all A, C having AN C of codimension one in A as well as in C, then F' is independent of A.
Assume that none of the above equalities hold, i.e.,

F(A,B) # F(A, D), F(A,B)+F(C,B) (6.2)

for general A, B, C, D such that (A+C, BN D) € D,_;(X). We may assume that (A+C, BND) €
Dom(f*_,). Since

Xa,8) N Xc.py = Xa+c,BnD),
by the definition of f# and f* |, we obtain
F(A,B)+ F(C,D)c pr'o f! [(A+C,BND).
Since F' is not constant and
dim F(A,B)=¢ —i,=¢ —i,.1 — 1 =dimpr'o f* [(A+C,BND)—1,
we obtain
F(A,B)C F(A,B)+ F(C,D) =pr' o f*_(A+C,BN D).
By the same argument using , we obtain
F(A,B) + F(A,D)=F(A,B) + F(C,B) = pr' o f* [(A+C,BN D).
Choose another (C”, D) such that (A+ C’, BN D’) € D,_1(X). Then we obtain
pr'ofl (A+C',BND)=F(A B)+F(A,D)=p'of' (A+C,BND). (6.3)
Similarly, we obtain

pr'off (A+C',BND)=F(AB)+F(C',B)=prof' (A+C',BnD),
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implying together with that
prloff (A+C,BND)=pr'off [(A+C',BND).
Now by fixing (C’, D) and changing (A, B) with (A’, B"), we obtain
prloff (A+C,BND)=pr'off (A +C BnND).

Since any two characteristic subspaces of rank r — 1 is connected by a chain (X;,Y;),i =1,...,¢
such that

pr' o fffl is constant, contradicting the assumption that f is proper. Therefore F' depends only
on A or only on B.
Suppose f° is a CR map. Let

I = {(z, ff(x)): « € Dom(ff)}
be the closure of the graph of f¢. Since f# is a rational map, I'¥ and its image under the map

m=pr x pr': Dy(X) x Fi, (X') = D,(X) x F, (X')

are irreducible closed varieties. Moreover, since f’ satisfies

pr'o fi= fropr,
we obtain
{(y, /}(y)) : y € Dom(f}) N £, } C (%)

as an open set. Therefore, f? extends to D,(X) as a meromorphic map whose graph is a dense
open subset of 7(I'%). Since D,.(X) is a rational variety, by [C49], f? is also rational. By the same
argument, f? extends rationally if f? is conjugate CR. O

Note that since f is proper, we obtain

F(Do()) N E;, (S(X))

r

0, Vm>1.
Moreover, by Lemma [6.3] we obtain
()7 (Fi (Sm(X))) © Do(Se(X))

for some m > /.
Fix r. For 7" € F; (X') with s < r, define

Z;_/ = {OJ € .F;;T(X/): X;./ D) X;./}, Zﬂl./ - pTI(Z;./),
(X'): XL, o XLY, (ZYY =pr'(2Y3)

T T

(2% ={d' € Fy,,
and for ¢/ € F; (X') with s > r, define
Q;/ = {[OJ] € ET(X/): X(/)./ C XL/}, QL/ == pT/(QL,).
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Lemma 6.6. Let s < r. Then f> satisfies

£(Z; 0 Dom(f,)) C Z, 7 € Dy(Q) N Dom(f?)

()’
and

f/(Z- 0 Dom(fy))  Z,

iy T € Dapa(Q) N Domy( 1)

Similarly, fﬁ»lm satisfies

f"}l/Q(ZT N Dom(fb71/2)) C Z}E(T)’ 7 € Dy(Q) N Dom(fF)

T T

and

ﬁ,1/2(ZT N Dom( :,1/2)) C Z}u

D (0 ¢
5!1/2(7), T E DSJ/Q(Q) N Dom(fs’lm).

Proof. First assume that 7 € D,(2). Choose o € D,({2) such that o € Z,, i.e.,
0#4£X.NQCX,NN.

Since
f(X-NQ) C f(XoNQ),
f(X; N Q) is contained in any characteristic subspace containing f(X, N Q). Since X', is the

Fi(r)
intersection of all characteristic subspaces containing f(X, N€2), we obtain

/
sm Y

for any characteristic subspace Y containing f(X, N Q). Since f#(c) is the intersection of all
characteristic subspaces containing f(X, N€2), we obtain

!/ /
Xt © Xty
ie.,
which implies

£2(Z, nDom(f’)) C Z}@(T).

Let 7 € 9D, (Q)NDom( f#). Choose a sequence 75, j = 1,2, ... in Dy(Q2)NDom( f#) that converges
to 7. Since pr(o) € Z, if and only if pr(r) C pr(o) as subspaces of Vy, for any pr(o) € Z,, there
exists a sequence pr(o;) € Z,,, j=1,2,..., that converges to pr(c). By (6.4), we obtain

pr'(fi(m3)) € pr'(Fi(o;)).
By taking limits, we obtain
pr'(fi(r)) € pr'(fi(0)),
ie.,
s !
pbr (fr(o-)) € ng(T)

The same argument can be applied to other cases, which completes the proof. ([l

Similarly, we obtain
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Lemma 6.7. Let s > r. Then f> satisfies
£(Q- nDom(f})) € Q' . 7 € Dy(2) N Dom(f?)

and

£2(@- N Dom(£2)) € Qs

e TEDup(@nDom(f ).

Similarly, ff 12 satisfies

7“1/2(QT N Dom(f; 12)) C an 7 € Dy(2) N Dom(ff)

and
rl/Q(QT N Dom(f; 12)) C qu

Lemma 6.8. Let €, be a general rank s boundary component of 2 and let o € D,(Ss(X)) be a
general point such that Q), C Q,. Suppose there exists a boundary component QL, of ' such that

1/2(7_)a T E Ds,l/?(Q) N Dom(fs 1/2)'

!/
f“( SRU”

Then for all general v € D,(Ss(X)) such that Q, C €,
!/ !/

erﬁ_(y) CcQ,.

As a consequence,

f (QpﬂDom(f )) C Q

Proof. Let Q, C Q,. Choose a sequence {p,}; C Ds(Q2) N Dom(f?) as in the proof of Lemma
that converges to p. Since (2, and ), are contained in €2,, we can choose sequences {o;}; and {v; },
converging to o and v, respectively such that 2, U2, C Q, . Since €}, and (2, are contained in
the same characteristic subdomain of §2, we can choose x; € €5, and y; € €2, such that Kobayashi
distance between x; and y; is bounded above by a fixed constant C' independently of j. Since f is
holomorphic, Kobayashi distance between f(z;) and f(y;) is bounded above by the same constant
C'. Therefore any cluster points of {f(z;)} and {f(y,)} should be contained in the same boundary
component. Hence by the same argument as in the proof of Lemma , Q’ﬂj ©) and Q’ﬂj ) should

be contained in the same boundary component.

7. RIGIDITY OF THE INDUCED MODULI MAP

Let (©,Q) be a pair of bounded symmetric domains with rank ¢ and ¢/, respectively that
satisfies the conditions in Theorem or Theorem [I.3] Suppose that X and X’ are one of the
type I and III, 7, > 4,1+ 2 forall r=1,...,q — 1, where we let 7 = 0. Since

Zq—lgq,_]-<2q_2:2(q_]‘)7

this is impossible. Hence there exists » > 1 such that 4, = i,_y + 1. Similarly, by Lemma [6.4] we
obtain that if X and X’ are of the type II, then 2 < i, < 2(2¢ — 3) and there exists r such that
Iy = ir—l,% +1or ir,% =1, + 1. If X is of the type II, X’ is one of the type I and III, then the only
possible case is ¢ = 2[n/2] — 1 and iy = 1, 4, = 9,1 + 2, r > 1. In this section, we will show the
rigidity of the induced moduli map f? for such r. More precisely, we will prove the following.

Lemma 7.1. There exists v such that > or f_rb extends to a trivial embedding.
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The proof of Lemma [7.1] will be given in several steps. Let r be an integer such that
iy =iy 41 (7.1)

whenever X’ is of type I or III. If X and X’ are both of type II, then we let r = 1 if iy = 2 and
we let 1 < r be an integer such that
ir—l,% =i_1+1 or i,= ir—l,% +1
if iy > 2.
From now on we assume that fﬁ is holomorphic. The same argument can be applied to the case
when X is of type I and f? is anti-holomorphic.

Proof of Lemma [7.1] when r = 1: In this case we obtain

A(Di(X)) € pr'(Dy(X")).
In particular, f sends minimal discs of €2 into balls in 2. Hence by [MO8b], and [N15a], f is a totally
geodesic isometric embedding and preserves the variety of minimal rational tangents. Let 0 € §2
be a general point. Assume that f(0) = 0. Since df preserves VMRT, dfy : To(X) — Tp(X') is an

embedding that preserves rank one vectors. For instance, if X = LGr, and X' = Gr(¢/, (Cp'“/),
then df, satisfies

[dfo][S*] = [a ® b]

for some a and b. Consider
[dfo][S*(vo + tv1)] = [ar ® by), tER.

By comparing the coefficient of t*, we obtain that either one of a; and b; is constant or a; = ag+ta,
and b, = by + tby. In the first case, we obtain that [dfs] maps PToX into %,(X'). Since the
holomorphic map f :  — €' is already known be a totally geodesic isometric embedding, it would
follow that S := f(2) C ' is a Hermitian symmetric subspace of rank-1, which is impossible given
that €2 is not biholomorphic to a complex unit ball. Hence the second case holds. Since vy and v,
are arbitrary, we obtain
[dfo][S*v] = [L1(v) @ La(v)]

for some linear embeddings L; and L,. After composing with a suitable automorphism of X', we
may assume without loss of generality

[dfo] [S*0] = [1(v) @ 22(v))],

where 2; : C* — C? and 1, : C" — C? are trivial embeddings. Since f is an isometric embedding
and the set of all rank one vectors spans Ty(X), this implies that f : DI — DII),,q, is a trivial
embedding. The same argument can be applied to the other cases.

Proof of Lemma when 2 < r < ¢ — 1: In this case, as subgrassmannians in D,(X) and
F, (X'), respectively, we have
rank Z, > 2, 7€ Dy(X) (7.2)
and
rank Z/, > 2, 7' € Dy(X').
If X and X' are of type II, then as subgrassmannians in D,_;(X) and F;
have

X", respectively, we
(X'), resp y,

r—1

rank Z, > 2, 1€ Dy(X)
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and
rank 7, > 2, 7' € Dy(X').

Therefore the following two lemmas and Lemma [5.3| will complete the proof.

Lemma 7.2. If X is of type I or type III, then f>: Dom(f’) C D.(X) — F;, (X') respects
subgrassmannian distributions. If X is of type II, then f>: Dom(f’) € D.(X) — F; (X') or

>+ Dom(f’_ ) C D.(X) — F;,,_,(X') respects subgrassmannian distributions.

T

Proof. Suppose that X is of the type I or IIT and i, = 4, +1. Then by Table[2]and Lemmal6.6] we

can show that f2 maps all rank one vectors in TZ,, 7 € Dy(X) into rank one vectors in TZJ’CIj )
0

Then by Mok’s result ([MO8D]) and (7.2), we obtain that either f? restricted to each general
maximal subgrassmannians in D, (X) is a standard embedding or the image of f? is contained in
a fixed rank one subspace in F; (X'). But since f is proper, the latter case does not happen.
Suppose that X and X’ are of the type II. Note that in this case, f# = f2. Suppose that
ir = i,_y,1 + 1. Then by the similar argument above we can show that f2: Dom(f?) C D.(X) —

F; (X') respects subgrassmannian distribution. Now suppose bpoy,1 = Gpo1t 1. Then by the similar

r

r—1

argument, we can show that ff_l , respects subgrassmannian distributions. Let 7 € Dy(€2) so that
’2

Z, C D,—1(). Then it is enough to show that frﬂ_l is a standard map on Z, for all 7 € Dy(2).
Let

7t = Gr(a,V).
Then

7'—1,%

Zr 2 =Gr(a—1,V)
and by assumption, ffq , : Gr(a—1,V) — Gr(b, V') is a standard embedding for some Gr(b, V') =
)
Z!,. For a fixed € € Gr(a —1,V), consider a rank one subspace

Le={[toW]eGr(a,V): W eGr(1,V),W ¢ £}

Then for each [ & W] € L, there exists oy € 712 such that
X[§®W] = X:NX,

W

where Xegw is the rank r — 1 characteristic subspace corresponding to [ @ W] and X, and
Xy, are totally invariantly geodesic subspaces corresponding to  and oy, respectively. By the
definition of f* |, for gy = [€ ® W] € L¢, we have

/ o / / /

fEow) T ﬂ X © Xfffl 3 © a Xfffl 3 (ow)

. : :

where the first intersection is taken over all characteristic subspaces X, containing f(2 N X, ).
Since 7, ;. 1= tr—1 + 1, this inclusion implies

/

o / /
fialmw) AT L (00) : Xff

_ /
ylew) T T O+ ow)

and ff_l , (€) is a codimension one subspace of ff_l 1 (8) —|—ff_1 , (ow). Here ff_l 1 (8) +ff_1 L (ow)

is the smallest subspace in V' that contains ff_l (U ff_l (ow). Moreover since ff_l , is a
) ’2

1
2
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standard embedding, we obtain that on Lg, ff, L1(©)+ ff, L 1(ow) is either constant or of the form
’2 ’2

(@ s(W)

for some projective linear embedding ¢ : Gr(1,V) — Gr(1,V’). In the first case, since 7 and & are
arbitrary, ff_l is constant on D,_1(€2), which is impossible. Therefore the second case holds and

{Fo O+ F o) Wear@Q VW el #{f )+ F,, (ow): W eGrLV).W ¢}

if ¢ £ €. Since ¢ is arbitrary, f*_| restricted to Z7! is a standard embedding by [M08a]. O

We may assume that f(£2) is not contained in any proper totally invariantly geodesic subspace
of . Let V € X(= Dy(X)). Let Zy = Gr(a,,V). Since f° respects subgrassmannians, there
exists subspaces Wy, W such that on a big Schubert cell, f? is given by

(x) € Zy — Wy @ (x) € Wy @ Gr(a,, Wh) (7.3)
or
(ZL“) ey Wy ($t) e Wy GT(bT, Wl), (74)

where b, = r if X is one of the type I and III, b, = n — 2[n/2] + 2r if X = OGr,,. Suppose (7.4
holds. Since D, (X) is Z-connected with 7 € Dy(X), as in the proof of Lemma [5.3] there exist
subspaces W, W, W4 C Vx: independently of 7 € Dy(X) with dim W{| = b, > 0 such that for
T E Do(X),

(2 c W@ Gr(c, W] @ W), ¢, = dim Wy,

On the other hand, since f> maps Zy to Z}(V) = Gr(a;., f(V)) for V € Q, in view of (7.4), we
obtain

W, C f(V), VYV eqQ.

Therefore f(€2) is contained in a totally invariantly geodesic subspace of €', which is a contradic-
tion. Hence f> on Z, is of the form (7.3)) and there exists a subspace W5 such that

D (X)) € Wy @ Gr(a,, W),
where W, is given in (7.3)). Since
F(Dr(@) € F (),
we obtain
A
Write
f=w,oH.

Choose I,y y-isotropic subspace WO such that dim Wo = dim W, and Ip@q/(WO, W) = 0. Then, we
obtain the following lemma.

Lemma 7.3. H satisfies
Wo & H(E:(X)) C 5, (X'), (7.5)

Wo @ H(Dy(X)) ¢ Sp(X). (7.6)
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Proof. By Lemma [6.3] Lemma there exists m such that
F(20(X)) C Fi (Sm(X)). (7.7)

T

Since Ly o >0, to show (7.5)), it is enough to show that m < i, — dim W,. Suppose that (|7.5))

does not hold. Then m > i, —dim W. Let V) € ,.(X) be a general point. Choose oy € D,.(S,(X))
such that Vo = pr(op). By . there exists a unique boundary component Q’ . of 0 with rank

m such that Q} £ (00) C Q’ Since m > i, — dim Wy, pr'(pug) is a proper subspace of H(Vj). Since
{00

Q’fﬁ (o) is contained in a unlque boundary component, pr'(p) is the unique maximal I,/ ,-isotropic
00

subspace of H (V). In what follows, we will show that
F(D:(Q) € QY

which is a contradiction to the assumption that f is proper.
Choose a general 7 € §y(€2) such that V(= pr(op)) € Z, C £,(X). Write

Z, = Gr(n,, V;)

for suitable V, C Vx. Since fﬁ respects subgrassmannian distributions and fﬁ restricted to Z;

satisfies ((7.3)), we obtain
f2(Z;) = Wo & Gr(n,, L,)

T

for some L.. Then there exists a unique subspace R C V; such that
RUV €Z :VDORY) ={V'€ f)(Z): V' > pr'(u)}.
Since R is a subspace of V, we obtain
I,,(R,R) =0.

Hence there exists a unique boundary component €2, = X,N0Q of rank s > r such that pr(p) = R
and 02, D €.
Consider
= {pr(o) € D,(X): X, C X,}.
By definition, we obtain
H(V) D pr'(), V €Q,NZ,.
Since Z, is of rank > 2 and
RSV GV,

Q, N Z, contains a rank one subspace of dimension at least 2. Since f’ on each Z, satisfies (7.3),
we obtain

[V €D(X):V DR} C{V' € F.(X): V' D pr'(up)},
ie.,
£(@Q,) CcQ, (7.8)
Choose a general o € Q, such that €, C €,. Then Q’ )
component of . By (7.8), we obtain that m' = m " Since 1, and Q’ , are rank s and rank m

is contained in a rank m’ > m boundary

boundary components of 2 and €', respectively, by Lemma [6.3] - we obtaln

FHDL(Ss(X) N Dom(f))) € F;, (Su(X")).
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Let
A= (f:)_1<Q;L{)) N DT<SS(X))

Then A is a nonempty set containing {pr(r) € @, : Q, C Q,}. Let v € A be a general point. Then
by definition
!/ /
P ©
Choose a rank s boundary component €25 of {2 such that €, C ; and choose a general ¢ such

that 5 is a rank r boundary component of Q. Then by Lemma[6.§] we obtain

o
L) © Ly
On the other hand, by ([7.7)), Q/fu - should be contained in a rank m boundary component of €)'

Since Q;J / is a rank m boundary component of €2, we obtain
!/ !/
Do) <
Since (25 is a boundary component of €25, by the same argument as above, we obtain
b
fr (Qﬁ) - Q:Lé)
Since any two points 01,0, € X, are connected by Q5-chain for p € D,(S;(X)). we obtain
f(Z,NDom(f))) C Q.

Since ¥,(X) is a Levi nondegenerate generic CR manifold, we obtain

£(D(X) N Dom(H)) C Q.

T

Next suppose (7.6) does not hold. Then there exists m such that f2(D,(X)) C D; (Sm(X")).
Hence we obtain f#(D,(Q2)) C D;, (S (X’)), which contradicts the assumption that f is proper. [

Proof of Lemma [7.1] when r = ¢ — 1: Assume that X’ is of type I or III. If 4, = 1, then r = 1
satisfies the condition ([7.1)). By the proof of Lemma in the case of r = 1, then f is a standard
embedding. We may therefore assume without loss of generality that i; > 1. If i,_y < ¢’ — 1, then
since 1 < 4y and 4,1 < ¢ —1 <2 — 3, ig_0 = i;-1 — 1 < 2¢ — 4, hence there must necessarily
exist another r satisfying 2 < r < ¢ — 1 such that i, = i,_1 + 1, which has already been taken care
of in the above.

Without loss of generality we may therefore assume that i,_; = ¢’ — 1, in which case 7,1 <
2(¢ — 1) and hence X cannot be of type II. Therefore X is of type I or III and i, = i;_o + 1,
which implies that fg_l maps Z,, T € Dy_2(5,-2(X)) to Z.,, 7" € Dy_5(X’). By Lemma ,
Zr, 7 € Dyo(S4—2(X)) and Z.,, 7" € Dy_o(X’) are projective lines in X, 1(X) and D,_1(X’),
respectively. Hence f(';_l sends projective lines in ¥, 1(X) to projective lines in Dy _;(X’). Note
that fg_l maps 2,1 to Z;,_l. Since ¥,_; and Z;,_l are Levi nondegenerate CR hyperquadrics
and fg_l(Dq_l(X)) is not contained in 3, ,, fg_l restricted to ¥, is a transversal CR map at
a general point. In particular, fq[1 is of maximal rank at a general point. Therefore Lemma
completes the proof.

Assume now that X’ is of type II. Since the pair (X, X’) satisfies the hypothesis in Theorem
or Theorem , X must necessarily be of type II. Therefore Z, and Z/, are of rank greater or
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equal to 2. Therefore by the same argument as in the case of r < ¢ — 1, we can show that fqbf2 is
a trivial embedding if 7, _» 1 =45 + 1 and f2_y is a trivial embedding if i,y = lgp 1+ 1.

By Lemma , we can choose 7 > 1 such that f? is a trivial holomorphic embedding. Moreover,
if r < ¢ — 1, then there exists a natural embedding of 2 : Vx — Vx/ given by f° such that
F(Dr(X)) C Vo @ Gr(ay,1(V))

and 2 =V, @ S,, where a, = ¢ —r if X is of type I or III and a, = 2(q —r) if X is of type II and
Sy: D.(X) — Gr(a,,1(Vx)) is a trivial embedding. We will identify Vx with +(Vx) and regard Vy
as a subspace of V.

Lemma 7.4. i,y = i,_9 + 1 and there exists Vo C Vx: such that
f =Vo® S,_1: Dyr(D) = Vo @ Gr(1, V)

q
if X is of type I or I1I and

fr =Vo®S,1:Dyr(D) = Vo @ Gr(2, Vi)
if X is of type 11
Proof. First we assume that X is of type I or III. Then by assumption on the pair (X, X’) in
Theorem or Theorem , X'"1is of type I or 111, too. If iy_1 = i,_o+1 = ¢’ — 1, then it is clear.
Suppose 4,1 > i,_2+1ori,_1 < ¢'—1. Then we can choose r < ¢—1 such that i, = i,_;+1. Hence
it is enough to show that if r < ¢ — 1 and ¢, = 4,1 + 1, then 4,1 =i, + 1 and fﬁﬂ =Vo® Sri1.
Let i € D,11(€2) be a general point. Let V,, be a subspace of Vx of dimension ¢ —r — 1 such that

Q.={VeD(X):V,CV}

Since f° preserves Q,, we obtain

fﬁ(@u) - Q/J‘f+1(u)'

Let L, C Lx be a minimal subspace such that
Q@ (yN P(D(X))=Vo@ {V'€Gr(a,,Vx): L, CV'}.
r+1
Since S, is a standard embedding, we obtain dim L, = dim V,,. We will show that

' (Fa(w) = Vo & L,
which will imply
ipp1=¢ —dimVy+r+1=1,+1
and
f f =Vo® Srq1.
By assumption on f> and Lemma , we obtain

£Q)=Vo®{VeaGr(a,Vx): L,cV}cQ

F )
Since by definition
Q}§+1(“) ={V' cVx 3p7’/(ff+1(ﬂ)) c V'},
we obtain
' (fEa (W) C Vo @ L,
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as a subspace. On the other hand, for any o € D,(2) with pr(o) € Q,, we obtain
pr' o fH0) = 2o pr(0) € F(Qu) = Vo @ {V € Grlan, Vi): L €V},
which implies
Fi(o) € {(Vo ® V1, Va) € Flapapy(¥): L € Vi)

Since

f(QM) C U f(QO')>

O'EQ;L

we obtain
f(€,) C XEVO@LM,W)

for some W C V.. Since f* 11(pe) is the smallest Hermitian symmetric subspace that contains
f(€,), we obtain

Vo © Ly C pr'(f11(n))
completing the proof. The same argument can be applied to the type II case. 0

8. PROOF OF THEOREMS

8.1. Proof of Theorem . By Lemma [7.4] we obtain f)_; = Vo ® S;_1: Dg—1(X) = F;,_, (X')
is a trivial embedding. Then we obtain

F=vef 0 hao
for some subdomain € of € with rank < ¢'. By replacing f : Q — € with f: Q — Q”, we may
assume that f}_,: Dy_1(X) — Gr(1,Vx/) C F;,_,(X’) is a trivial embedding if X is of type I or
II and f}_,: D,y (X) — Gr(2,Vx) C F;,_,(X’) is a trivial embedding if X is of type II. Let
7 Vx — Vx/ be a linear embedding induced by fgfl. Then j defines a standard holomorphic

embedding g: X — X’ such that g} _, = f_,.

Lemma 8.1. Let g: X — X' be the standard holomorphic embedding induced by j : Vx — Vy

andY C X' be the mazimal Hermitian symmetric subspace such that g(X) XY is a totally geodesic
subspace of X'. Then there exists a holomorphic mapping h: Q — Y such that

f=gxh:Q—g(Q)xY.

Proof. Assume that f(0) = ¢(0). Assume further that © and Q' satisfy the condition 2), i.e., 2 is
of type III and € is of type 1. Since fg_l = gg_l is induced by a standard holomorphic embedding,
by Lemma [6.3, we obtain

f5_1(2q—1(X)) - Eq’—l(X/)‘
Moreover, since pr': Dy_1(Sy—1(X’)) — Xy-1(X’) is one to one, for each o € D,_1(S,-1(X)),
there exists a unique maximal boundary component M, of 2’ such that

9(Q,) C Q;g,1<a> C M,.

Note that since fg_l = gz_l and M, is a maximal boundary component, we obtain

!
7o) © Mo (8.1)
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For a maximal characteristic subdomain €2, C €2, choose a minimal disc A, C €2 passing through
0 such that A, x Q, is a totally geodesic subspace of 2 and hence A, x €, C S,-1(€2). Let
Qa(t) = {t} X Q,, te ZU.
Since g : X — X’ is a standard embedding and
9 Qo)) C Moy, Vit IA,,

there exists a minimal disc A/ of €' such that

9 Qo) CTAL xg(Qy) CALXM,, Vtel,, (8.2)
Since fgfl = 92717 by (8.1) and (8.2)), we obtain
F(Q0) €Ly ) © Do X My, VEE A, (8.3)

Define
Z = \A,)*

where the intersection is taken over all minimal disc A, passing through 0, A is the minimal disc
given in (8.2) and (A/)* is the maximal characteristic subspace passing through f(0) such that
Ty (AL)= = Ny, v € TyAL. Then by (8.2), Z is a maximal Hermitian symmetric space such that
g9(X) x Z is totally geodesic in X'. We let Y = Z.

Choose the minimal Hermitian symmetric subspace X(y; y,) C X’ of rank ¢ such that g(X) C
X EVth)' Considering 0 as a subspace, decompose 0 into V; & W;. Choose a local coordinate system
of X" at f(0) such that f = (Fy, Fy) satisfies

Fl: Q%Xévl’vxl), F2: Q—>X(/W1,VX/)'
By (8.3) and induction on dimension, we can show that for any properly embedded maximal
polydisk A? C €2, there exist a ¢-dimensional polydisk A? C X(’V1 Ver) and a subdomain Q" C

QNX (,WLVX/) of rank ¢’ — ¢ orthogonal to A% such that A? x Q” is totally geodesic and

FAT) € A7 x Q"
which implies that on A C €2,

<F1, F2>p’,q’ = 0.
By differentiating it, we obtain

<8F117 F2>p/,q/ =0
on AY. Since A? is arbitrary, we obtain

<8F1, F2>p/7q/ = 0. (84)

On the other hand, since f is proper, by (8.3), we obtain
lim  f(z) C O(A?) x Q" C O

2E€AI—pe(AT)
In particular, F;: Q — X (,V1,VX/) N is proper. Then by [Ts93], F} is a totally geodesic isometric
embedding. Since fg_l = gz_l, we obtain 0F; = dg. Hence by complexifying , we obtain that
F5(Q) is contained in a subdomain of 2" orthogonal to g(2), i.e., f(©2) C g(©2) x Y and

FlEg.
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The same argument can be applied to the case when Q and ' satisfy the condition (1).

We have proven that writing F' = Fy x Fy: Q — Q) x Q) F; : Q — Q' is a standard embedding,
and it follows that F' : Q — Q) x Q) is a holomorphic totally geodesic isometric embedding
with respect to Kobayashi metrics. By Mok ([M22, Theorem 3.1]), the holomorphic embedding
10 Q) x Q) — € is a holomorphic totally geodesic isometric embedding with respect to Kobayashi
metrics. It follows that f : @ — Q' is also a holomorphic totally geodesic isometric embedding
with respect to Kobayashi metrics, as desired. O

Remark Given a complex manifold X hyperbolic with respect to the Kobayashi metric, a point
r € X, and a nonzero real tangent vector v € TX(X), there can be more than one germ of
real geodesic curve 7 : (—¢,e) — X such that v(0) = = and +/(0) = v. We say that a complex
submanifold S C X is totally geodesic to mean that given any two distinct points xq,x9 € S,
there always exist a real geodesic curve v on X joining x; to xs such that the image of v lies on
S (while there may be other real geodesic curves on X joining x; and xo that do not entirely lie

on S).

8.2. Proof of Theorem . First assume that 2 and €’ satisfy the condition 1). Suppose that
there exists a proper holomorphic map f: D}, — DI with 2 < ¢ < ¢’ < 2¢ — 1. By composing
a standard embedding ;5 : Df;,” — DL . we may assume that f: Dziq — Dé’,q’ is a proper
holomorphic map. Then by Theorem f is of he form g x h, where g : DZI,’q — D§,7q, is a
standard holomorphic map and h: Q — Q" is a holomorphic map for some subdomain Q" C D;,jq,
orthogonal to g(DI{’q). Since f (Déq) C Dé,l I this implies that Dé,H contains a rank ¢ characteristic
subspace that contains D}iq, which is impossible.

Next assume that Q and €' satisfy the condition 2). By the same reason as above, we may
assume that Q' is of type I. Suppose there exists a proper holomorphic map f: DI — Dé,’q, with
2 < ¢ < 2[n/2] — 1. Since ' is of type I, we obtain ¢y = 1, i,y = ¢ — 1 and i, = 4,1 + 2
forall r =2,...,q — 1. Since i; = 1, f preserves VMRT and therefore is a standard embedding.
Then by the same argument in the proof of Lemma(7.2] we obtain that for all r = 1,...,[n/2] — 1
and all 7 € Dy(X), f’ restricted to Z, is a standard embedding. In particular, f5: Z, N Z, —
A ) Nz £00) is a standard embedding from a Grassmannian of rank 3 to a Grassmannian of rank

2 if dim Z; N Z, > 0, which is impossible.

9. APPENDIX

For X = Gr(q,p), see [Ki2l]. Let p, ¢ be positive integers such that ¢ < p. Define a Hermitian
inner product (, ), in C**? by

q
(U, V)pg 1= w01 + -+ Uglq — Ugr10g41 — *** = Up+gUpg,
for u = (uy,...,upry) and v = (v, ..., Vp44). Recall
Y (Grq,p)) ={Z € Gr(q—r,CP*0) : { ), |z =0} forr <gq,

Y.(0Gr,) ={Z € Gr(2[n/2] = r,C**) : { Vpulz =0, Sulz =0} forr <n,
SA(LGr,) ={Z € Gr(n —r,C*) : { Vpunlz =0, Ju|z =0} forr <n.

For X = Gr(q,p), OGr, or LGr,, let ¢ denote ¢ — r, 2[n/2] —r, or n —r, G denote SU(p, q),
SO(n,n) or Sp(n), and g denote su(p, q), so(n,n) or sp(n) respectively. If X = OGr,, or LGr,,
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then p = ¢ = n. For X = Gr(q,p), OGr, or LGr,, a Grassmannian frame adapted to ¥,(X), or
simply X, (X)-frame is a frame {Z,..., Z,,} of CP™9 with det(Zy,..., Z,4) = 1 such that

~

(Za Zp+q4+f3>p,q = <Zp+qf€+a> Zﬁ>p,q = dap; (ZHJ’ Z€+k>p,q = Ok, (9.1)
fora, 8=1,...,0, j,k=1,...,p+q—2¢ and
(Zn, Zr)pq, =0 otherwise,
where @k = J;, if min(j, k) < q— ¢, ak = —J;; otherwise, and the capital Greek indices A, T,

etc. run from 1 to p + ¢, i.e., the scalar product (-,-),, in basis {Z,..., Z,4,} is given by the
matrix

0o 0 0 I
0 I 0 0
0 0 —I,, 0

I, 0 0 0

We use the notation

Z = (Z1,..., %),
X = (X17 ce 7Xp+q—2€) = (ZZ—H, ) Zp—l—q—é)a
V=W,....Y)) = (Zprge+1,-- -+ Zptq)-

Let B.(X) be the set of all ¥, (X)-frames. Then B,(X) can be identified with G by the left
action. By abuse of notation, we also denote by Z the ¢-dimensional subspace of CP*? spanned by
Zy,...,%Z, Then we can regard B, (X) as a bundle over 3, (X) with respect to a natural projection
(Z,X,Y) — Z. The Maurer-Cartan form 7 = (') on B,(X) is a g-valued one form given by the
equation

dZy = m\ Zp
satisfying the structure equation
dry = mP Ay
We use the block matrix representation with respect to the basis (Z, X,Y) to write

8 l4j +q—0+8 ‘
§q+k Zﬁkj W%q s =10 kﬁ Wk? Qkﬁ :
7Tp+q—€+a 7Tp+q]—€+a Wpﬁ-qq—é—&-a gaﬁ Ua] waﬁ
which satisfies the symmetry relations
%g 0 %Z Vg 950" 95
O'kﬁ wkjl HAkB = — 51{60762 ifwjj 5?0?’
ga Ua] wa 6 Ba 6; 0-{ “ ¢ Ba
that follow directly by differentiating (9.1)). For a change of frame given by
Z Z
X|=UX],
Yy Y

7 changes via

T=dU -U'+U-7-U"
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If X = LGry, {Z...., Zs,} satisfies
Io(Zoy Zp) =0, a,f=1,...,L
We may regard ¥,(X) as a submanifold of ¥, (Gr(n,n)). Since ¥, (LGr,,) is a generic CR manifold
in SGr(n —r,C*), we obtain
CTpY, (X)/(TH"S0(X) + T 'S, (X)) = TpSGr(n — r,C*) /D = S?U*,
where D and U* are defined in Section [d] Therefore we obtain a reduction of frame by
67 — 65 =0 (9.2

and ¢ 7 + ¢z, a,f=1,...,¢ span the contact forms. That is, the set of all ¥,.(Gr(n, n))-frames
adapted to 3,.(X) is the maximal integral manifold of (9.2). If X = OGr,, then {Z;...., Z5,}
satisfies

Su(Za, Z5) =0, a,B=1,...,(
and
CTpE (X)) /(TH'S(X) + TR'S.(X)) = TpOGr(2([n/2] — r),C*™) /D = A*E*,
where for P = [E],
D=E®(E+/E), E*=C>™/E"

Therefore we obtain a reduction of frame by
¢o¢ﬁ + ¢,Ba =0

and ¢,° — ¢g", o, =1,...,L span the contact forms.
There are several types of frame changes.

Definition 9.1. We call a change of frame

i) change of position if
Zo=W,25, Y, =V,"Y X;=X;,
where W = (W, %) and V = (V_?) are £ x ¢ matrices satisfying VIW = I, and if X = OGr,

or LGr,, W and V are symmetric or skew-symmetric, respectively;

ii) change of real vectors if
Zo="Z0, X;=X;, Yo=Y+ H/Zs,

where H = (H_?) is a Hermitian matrix;

iii) dilation if
Zo =M 20, Yo=AYa, X,=Xj,

where A\, > 0;

iv) rotation if
Zo =20, Yo=Ya, X;=USX,,

where (U;") is an SU(q — ¢,p — {) matrix.
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Change of position in Definition [0.1] sends ¢ and 6 to
T8 _ v+ B * B _ 5 ni_ Bp J
50 =W W E WP =W, 6] = w0,
Dilation changes ¢.°, 67 to

- 1 -1
B _— B I = _—@97
¢a )\a)\/j ¢a 9 o )\a a )
while rotation remains ¢_° unchanged and changes 6,/ to
0] =0}ru7.

Finally, we will use the change of frame given by

Zo =12, Xj=X;+CZs Yo=Yo+AlZs+BiX;

such that
and

AP +A7+B/B =0,
where

B.% .= jkBak-

J
Then the new frame (Z, X,Y) is an %, (X)-frame and the related one forms ¢, remain the same,
while 67 change to

0] =067 —o)B;.

«
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