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Infectious disease modeling

Epidemics:

�Black Death
Europe lost 1/3 of population in 1347 -

1350.
Great Plague of London, 1664–66. 

Killed more than 75,000 of total 
population of 460,000.

rat flea



Infectious disease modeling

Epidemics:

� Influenza

� killed  25 million in 1918-19 in 
Europe

influenza virus



Infectious disease modeling
Epidemics:

� AIDS

� SARS

AIDS virus

Coronavirus



Infectious disease modeling
Epidemics:
� bovine spongiform 

encephalopathy
(mad cow disease)

� Chicken flu



Infectious disease modeling
Mathematical models can:
� predict rate of spread, peak, etc., of epidemics
� predict effects of different disease control 

strategies
.

The WHO's eradication project 
reduced smallpox (variola) 
deaths from two million in 
1967 to zero in 1977–80. 

Smallpox was officially declared 
eradicated in 1979. smallpox 

virus



IndividualIndividual’’s s 
disease disease 
state :state : LatentLatent InfectiousInfectious

Immune / Immune / 
RemovedRemoved

timetime
Epoch :Epoch :

Serial interval

Incubation period

ttAA tBB tCC tDD tEE

Infection Infection 
occursoccurs

Latency to Latency to 
infectious infectious 
transitiontransition

Symptoms Symptoms 
appearappear

First First 
transmission transmission 
to another to another 
susceptiblesusceptible

Individual no Individual no 
longer longer 

infectious to infectious to 
susceptiblessusceptibles
(recovery or (recovery or 

removal)removal)

Note :  tD is constrained to lie in the interval (tB , tE), so tD > tC
(as shown) and  tD < tC are both possible.

SusceptibleSusceptible



Basic Assumptions of the simplest 
epidemic model, the SIR model
� Population size is large and constant
- No birth,death,immigration or emigration
� No latency
� Homogeneous mixing
- that is each pair of individuals has equal 

probability of coming into contact with one 
another (this is reasonable for a school or 
households in a building).



� We divide the total population N into three groups:
I) Susceptible class, St=S(t)=no. of susceptibles
— those who may catch the disease but currently 
are not infected. 
II) Infective class, It=I(t)=no. of infectives
— those who are infected with the disease and 
currently contagious. 
III) Removed class, Rt=R(t)=no. of removals
— those who cannot get the disease, because 
they either have recovered permanently, are 
naturally immume, or have died.  

Basic Assumptions of the SIR model



� The members of the population progress 
through the three classes in the following 
order.

Basic Assumptions of the SIR model

Susceptible 

St

Infectious
It

Immune/
Removed

Rt

SIR



Disease spreads when a susceptible individual 
comes in contact with an infected individual 
and subsequently becomes infected. 

� Assuming homogeneous mixing, the mass 
action principle says that  the number of 
encounters between susceptibles and infectives
is given by the product St It.

� However, only a proportion α of  the contacts 
between susceptibles and infectives result in 
infection. Hence, in the next time interval, 

Basic Assumptions of the SIR model

.  1 tttt ISSS α−=+



� However, only a proportion α of  the contacts 
between susceptibles and infectives result in 
infection. Hence, in the next time interval, 

Basic Assumptions of the SIR model

.  1 tttt ISSS α−=+
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Infectious 
It

αStIt



During one time step, the infective class grows 
by the addition of the newly infected. At the 
same time, some infectives recover or die, and 
so progress to the removed stage of the 
disease. 

The removal rate γ measures the proportion of 
the infective class that ceases to be infective, 
and thus moves into the removed class, in one 
step. 

Basic Assumptions of the SIR model
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Clearly the removed class increases in size by 
exactly the same amount that infected class 
decreases. 

Therefore, we have

Basic Assumptions of the SIR model
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� If we let ∆S= S t+1-St and similarly for ∆I
and ∆R, then the dynamics of the functions 
S,I and R are governed by the following 
equations. 
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� For example, if I0 = 1, S0= 1000, R0=0, α =0.001
and γ = 0.1, then S1=1000 - 0.001(1000)(1)=999 

and I1= 1+ 0.001(1000)(1)-0.1(1) = 1.9 ~2.



Exercise 1: Find St,It and Rt when t =2.

Exercise 2: Use Excel to compute St,It and Rt for t 
from 0 to 100 and plot the graph of St,It and Rt .
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Thread Values and Critical Parameters
� We will say an epidemic occurs if ∆I >0 for 

some time t (i.e., if at some time t, the number 
of infectives grows).

� If ∆I < 0 for all times, then the size of the 
infective class does not increase and no wider 
outbreak of the disease takes place. 

� Therefore, it is important to know when
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is positive, zero, or negative.



� Let’s find out when  ∆ I is zero.
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� ∆I =0 once It=0 (as the population is disease 
free). 

� Now assume It >0, then we have
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� Note that St is a non-increasing function in t.  
Therefore, if          , then for all t,  .  

α
γ

<tS  
α
γ

<0S

� Thus, if S0 is below the value     , then ∆ I
< 0 for all times, and the disease 
decreases in the population. 

� However, when         , the number of 
infective will grow and an epidemic 
occurs. In other words, we have an 
outbreak if and only if  

α
γ

α
γ>0S

100 >= SR  
γ
α



00 SR  
γ
α=

� The above expression is called the basic 
reproduction number of the infection. 

� Let’s consider from a more 
biological viewpoint.

� The term α S0 I0 measures the number of  individuals 
that become infected at the outset of an epidemic. 

� If we divide by I0 , we obtain a “per-infective”
measurement: α S0 is the number of individuals who 
become infected by contact with a single ill 
individual during the initial time step.
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� Actually, if we introduce one infective into a wholly 
susceptible population S0 , this ill individual may 
eventually infect many more than α S0 others, because 
an infective may remain contagious for many time 
steps. 

� For example, suppose a young child remains contagious 
with chickenpox for about 7 days. Then, using a time 
step of 1 day, this child would infect about (α S0 ) (7)
susceptibles over the course of a week. 

� Moreover, if the period of contagion lasts 7 days, then 
each day we expect roughly  or approximately 14% of 
the total number of infectives to move from the 
infective class It into the removed class Rt .



� Because the removal rate γ measures the fraction 
of the infective class “cured” during a single 
time step, we have found a good estimate for γ ; 
we take      

� At the same time, we have found a good 
interpretation for 1/ γ : it is the average duration 
of infective class It into the removed class Rt .

� In fact, we can estimate γ for real diseases by 
observing infected individuals and determining 
the mean infectious period 1/ γ first. 
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� In summary, we have
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� Thus, R0 is interpreted as the average number of
secondary infections that would be produced by 
an infective in a wholly susceptible population of size S0 .



� Note that, from this point of view, the critical value 
of  R0 = 1 makes good biological sense. 

� If  R0 > 1, then a primary case of disease induces 
more than one secondary case of the illness, the 
size of the infective class increases, and an 
epidemic results. 

� If  R0 = 1, then a diseased individual produces only 
one new case of the disease, and no epidemic can 
occur; there can be no growth in the number of
infectives.

� When R0 < 1, the disease dies out. 



Basic Reproductive Number (R0)

� In a population
if R0 > 1 : epidemic
if R0 = 1 : endemic stage
if R0 < 1 : sucessful control of infection

� If population is completely susceptible 
measles : R0 = 15-20
smallpox : R0 = 3 – 5
SARS: ???



Continuous model

� Note that so far we are using discrete time 
intervals (e.g. one day). Now if we let the time 
interval to be very small, say one second. Then 
∆I is almost equal to the instinct change of I. 

� Therefore, one may replace ∆I by dI/dt, which is 
the rate of change of I (also called the derivative 
of I). Similarly, we may replace ∆S and ∆R by 
dS/dt and dR/dt respectively. 

� With these notations, our system of equations 
can be  replaced by the following system of 
ordinary differential equations.    



A system of three ordinary differential 
equations describes the SIR model:
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where is α the infection rate and γ the removal rate of 
infectives.



� Given such a system of differential 
equations, one would like to solve it (i.e. 
find functions S,I and R which satisfy the 
equations).

� In general, this system of differential 
equations does not have any closed form 
solution. However, for given α and γ, we 
can solve the systems of differential 
equations by using some mathematical 
software like Mathlab. 

� In general, the graphs of the S,I,R have 
the following shapes.



Graphs of S,I,R functions

Figure 1: Typical dynamics for the SIR model.



� To learn more about differential calculus, you may 
take  the following courses. 
MATH0801-Basic Mathematics I 
MATH0802-Basic Mathematics II 
MATH0803-Basic Mathematics III

� To learn more about differential equations, you 
may take MATH2405-Differential Equations

� To know more about how mathematics can be 
applied in biology, you may take MATH0011-
Numbers and Patterns in Nature and Life.

Advertisement



Case study: The Hong Kong’s SARS 
Outbreak in 2003

� Since November 2002 (and perhaps earlier) an 
outbreak of a very contagious atypical pneumonia
(now named Severe Acute Respiratory 
Syndrome,SARS) initiated in the Guangdong
Province of China. 

� This outbreak started a world-wide epidemic after a 
medical doctor from Guangzhou infected several 
persons at a hotel in Hong Kong around February 
21st, 2003.

� At the very beginning of SARS outbreak, SARS was 
believed to be a disease transmitted by respiratory 
droplets through close person-to-person contact. 



� Respiratory droplets are relatively large-sized 
particles and thus cannot travel long distances 
through air and therefore this mode of 
transmission cannot account for the rapid and 
wide spread of disease at Amoy Gardens, a 
housing estate in the Kowloon district of Hong 
Kong.

� At that time, one may therefore ask if the mode
of transmission is airborne.



� It is well-known that influenza is an airborne 
disease.

� In the 4th March 1978 issue of the British 
medical Journal, there was a report with 
detailed statistics of a flu epidemic in a boys 
boarding school with a total of 763 boys 

� Of these 512 were confined to bed during the 
epidemic, which lasted from 22nd January to 
4th February 1978. It seems that one infected 
boy initiated the epidemic. The SIR model was 
applied by J.D. Murray, to study the spread the 
flu epidemic in this school and he found that 
α= 0.00218 and γ= 0.440 and hence R0=3.78.



Application of SIR model to the Amoy 
Garden outbreak

� At that time, in order to see whether SARS is likely 
to be an airborne disease, together my colleagues, 
Dr. W.K. Ching and Dr. S.K.Chung, we   studied 
the spread of SARS epidemic at a high rising 
residential building (Block E  of the Amoy Gardens) 
by applying the SIR model.



� Since from 26th March 2003 to 30th March 2003, 
most of these confirmed cases are from Block E of 
the Amoy Gardens, we shall assume all of them 
are actually from Block E.

� There are 33 floors, 8 flats each 
floor in Block E. Hence there are 
about 792 residents living in the 
building (we assume here that 
there are 3 people living in each flat 
and there are totally 
8 ×33=264 flats in Block E). 
Therefore, we set S(0)= 792 - I(0).
I(0) is unknown at that time. 



� It is believed that one infected resident (a super 
spreader) initiated the epidemic when he visited 
and stayed with his brother's family, so we assume 
that 0 < I(0) ≤ 4.

� Note that the infected number of residents I(t) at 
time t is unobservable (why?) and we assume R(t) 
is equal to the cumulative number of residents in 
Block E confirmed with SARS symptoms at time t. 



Day 26/3/03   27/3/03  28/3/03  29/3/03  30/3/03

Confirmed  
Cases                      7 22        56 78 112

Predicted
Cases                     13          27        47 77 117 

� These numbers of confirmed cases and predicted 
cases (by the SIR model) are then summarized in the 

table below.



� The key idea of estimating the model parameters 
is to choose the parameters α, γ and I(0) such that 
they minimize the square of errors between the 
observed data and the model predictions.

� Recall that we can solve the system of differential 
equations by standard mathematical software once 
we have fixed α, γ,S(0) and I(0). In particular, we 
can find the R(t) curve and compare it with the 
observed R values.

� In this way, we find that when α= 0.001875 and 
γ= 0.975 and I(0)=4 (and hence R0=1.62), the 
error between the predicted and the observed 
values of R is minimum. 



� For SARS,  in the Block E of Amoy Gardens 
scenario, we found α= 0.001875 and γ= 0.975.

� For influenza, in the broadening school scenario, 
Murray found α= 0.00218 and γ= 0.44.

� We note that the value of the infection parameter 
α in this case is very closed to that of SARS at the 
Amoy Gardens. 

� This suggests that both epidemics may have 
similar ways of transmission. 

� At that time, a report of this finding was sent to 
the WHO.



� The mystery of Amoy Gadrens remains unsolved 
even though there are several completing 
theories. 

� Therefore, the mode of transmission is still not 
very clear. SARS appears to be transmitted mainly 
by person-to-person contact. However, it could 
also be transmitted by contaminated objects, air, 
or by other unknown ways. 

� See the recent book “At the Epicentre”, published 
by Hong Kong University Press. 



� The pattern of the SARS outbreak in Hong 
Kong was puzzling after a residential estate 
(Amoy Gardens) in Hong Kong was 
affected, with a huge number of patients 
infected by the virus causing SARS. 

� In particular it appeared that underlying this 
highly focused outbreak there remained a 
more or less constant background infection
level. This pattern is difficult to explained 
by the standard SIR epidemic model.

Another puzzle



� This pattern is difficult to explain with the 
standard SIR model. Try to build another model.
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Figure 2: Daily new number of confirmed SARS cases from 
Hong Kong: hospital, community and the Amoy Gardens.



Joint Work With
� Gabriel Turinici

INRIA, Domaine de Voluceau,
Rocquencourt, France

� Antoine Danchin
Génétique des Génomes Bactériens,
Institut Pasteur, Paris, France
(Former director of HKU-Pasteur 
Institute)



A Double Epidemic Model for the SARS 
Propagation

� Published in BMC Infectious Diseases
2003, 3:19 (10 September 2003)

� Can be found online at: 
http://www.biomedcentral.com/1471-
2334/3/19



� There are two epidemics, one is SARS caused 
by a coronavirus virus, call it virus A. 

� Another epidemic, which may have appeared 
before SARS, is assumed to be extremely 
contagious because of the nature of the virus 
and of its relative innocuousness, could be 
propagated by contaminated food and soiled 
surfaces. It could be caused by some
coronavirus, call it virus B. The most likely is 
that it would cause gastro-enteritis.

Hypothesis of the Double Epidemic 
Model for the SARS Propagation



� The most likely origin of virus A is a more or 
less complicated mutation or recombination 
event from virus B.

� Both epidemics would spread in parallel, and 
it can be expected that the epidemic caused by 
virus B which is rather innocuous, protects 
against SARS (so that naïve regions, not 
protected by the epidemic B can get SARS 
large outbreaks).

Hypothesis of the Double Epidemic 
Model for the SARS Propagation



� Learning from  a set of coronavirus
mediated epidemics happened in Europe 
that affected pigs in the 1983-1985.

� It is known at that time that  a virus and its 
variant caused a double epidemic when the 
virus changed its tropism from the small 
intestine to lung.

Motivation of a Double Epidemic Model 
for the SARS Propagation



� This  in a way allowing the first one to 
provide some protection to part of the 
exposed population.

� D Rasschaert, M Duarte, H Laude: Porcine 
respiratory coronavirus differs from 
transmissible gastroenteritis virus by a few
genomic deletions. J Gen Virol 1990, 71 ( Pt 
11):2599-607.

Motivation of a Double Epidemic Model 
for the SARS Propagation



� The hypothesis is based on:
A) the high mutation and recombination    

rate of coronaviruses.

SR Compton, SW Barthold, AL Smith: The 
cellular and molecular pathogenesis of
coronaviruses. Lab Anim Sci 1993, 43:15-
28.

A Double Epidemic Model for the SARS 
Propagation



B) the observation that tissue tropism can be 
changed by simple mutations .

BJ Haijema, H Volders, PJ Rottier: 
Switching species tropism: an effective 
way to manipulate the feline coronavirus
genome. J Virol 2003, 77:4528-38.

A Double Epidemic Model for the SARS 
Propagation



� Assume that two groups of infected 
individuals are introduced into a large 
population. 

� One group is infected by virus A.
� The other group is infected by virus B.
� Assume both diseases which, after recovery, 

confers immunity (which includes deaths: 
dead individuals are still counted). 

� Assumed that catching disease B first will 
protect the individual from disease A. 

A Double Epidemic SEIRP Model



� We divide the population into six groups:
— Susceptible individuals, S(t)
— Exposed individuals for virus A, E(t) 
— Infective individuals for virus A, I(t)
— Recovered individuals for virus A, R(t)
— Infective individuals for virus B, Ip(t)
— Recovered individuals for virus B, Rp(t)

A Double Epidemic SEIRP Model



The progress of individuals is 
schematically described by the 
following diagram.



The  system of  ordinary differential 
equations describes the SEIRP model:
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Meaning of some parameters

� It can be shown that the fraction of people 
remaining in the exposed class E s time unit
after entering class E is e-bs, so the length of 
the latent period is distributed exponentially 
with mean equals to 

bdse bs /10 =∫ −∞



Meaning of some parameters

� It can be shown that the fraction of people 
remaining in the infective class I s time unit
after entering class I is e-as, so the length of 
the infectious period is distributed 
exponentially with mean equals to 

adse as /10 =∫ −∞



Meaning of some parameters

The incubation period (the time from first 
infection to the appearances of symptoms) 
plus the onset to admission interval is equal 
to the sum of the latent period and the
infectious period and is therefore equal to 
1/b + 1/a.



Empirical Statistics

� CA Donnelly, et al., Epidemiological 
determinants of spread of causal agent of 
severe acute respiratory syndrome in Hong 
Kong, The Lancet, 2003.

� The observed mean of the incubation period  for 
SARS is 6.37.

� The observed mean of the time from onset to 
admission is about 3.75.

� Therefore, the estimated 1/a + 1/b has to be close 
to 6.37+3.75=10.12.



Parameter Estimations

� Since we do not know how many Hong 
Kong people are infected by virus B, we 
shall consider the following two scenarios.

� Case a: Assume Ip(0)=0.5 million, 
S(0)=6.8-0.5=6.3 million,E(0)=100,I(0)=50.

� Case b: Assume Ip(0)=10, S(0)=6.8 
million,E(0)=100,I(0)=50. 



� We fit the model with the total number of 
confirmed cases from 17 March, 2003 to 10 
May, 2003 (totally 55 days). 

� The parameters are obtained by the 
gradient-based optimization algorithm.

� The resulting curve for R fits very well with 
the observed total number of confirmed 
cases of SARS from the community. 

Parameter Estimations
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Figure 3: Number of SARS cases in Hong-Kong community (and the 
simulated case “a”) per three days.
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Figure 4: Number of SARS cases in Hong-Kong community (and the 
simulated case “b”) per three days.



Parameter Estimations

� Case a: Assume Ip(0)=0.5 million, S(0)=6.3 
million,E(0)=100,I(0)=50.

� r=10.19x10-8, r_p=7.079x10-8 .
� a=0.47,a_p=0.461,b=0.103.
� Estimated 1/a + 1/b = 11.83 (quite close to 

the observed 1/a+1/b= 10.12).



Parameter Estimations

� Case b: Assume Ip(0)=10, 
� S(0)=6.8 million,E(0)=100,I(0)=50.

� r=10.08x10-8, r_p=7.94x10-8.
� a=0.52,a_p=0.12,b=0.105.
� Estimated 1/a + 1/b = 11.44 (quite close to 

the observed 1/a+1/b= 10.12).



Basic reproductive factor

� R0 is the number of secondary infections 
produced by one primary infection in a 
whole susceptible population.

� Case a: R0=1.37.
� Case b: R0=1.32.

� We define the basic reproductive factor R0
as

 R0=rS(0)/a.



Conclusion
� We did not explore the intricacies of the mathematical 

solutions of this new epidemiological model, but, 
rather, tried to test with very crude hypotheses 
whether a new mode of transmission might account 
for surprising aspects of some epidemics.

� Unlike the SIR model, for the SEIRP model we 
cannot say that the epidemic is under control when the 
number of admission per day decreases. 

� Indeed in the SEIRP models, it may happen that 
momentarily the number of people in the Infective 
class is low while the Exposed class is still high (they 
have not yet been infectious); 



� Thus the epidemic may seem stopped but will then 
be out of control again when in people in the 
Exposed class migrate to the Infected class and will 
start contaminating other people (especially if 
sanitary security policy has been relaxed). Thus an 
effective policy necessarily takes into account the 
time required for the Exposed (E) class to become 
infectious and will require zero new cases during all 
the period. 

� The double epidemic can have a flat, extended peak 
and short tail compared to a single epidemic, and it 
may have more than one peak because of the 
latency so that claims of success may be premature.



� This model assumes that a mild epidemic 
protects against SARS would predict that a 
vaccine is possible, and may soon be 
created. 

� It also suggests that there might exist a 
SARS precursor in a large reservoir, 
prompting for implementation of 
precautionary measures when the weather 
cools down.


