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Abstract: We consider the class By of entire functions of the the form
=2 aie”

1 Introduction and Main Results.

The subject of factorization under the the composition of meromorphic functions is
clearly related to the dynamics of rational or entire functions.

We assume that the reader is familiar with some basic results and notations of Nevan-
linna Theory of entire and meromorphic functions (see Hayman [?]), which will be the
main tool of our investigations.

In [?], H. Urabe proved the following theorem.

Theorem . Let P;(: = 1,2) and @ be non-constant polynomials with deg P, < deg P»
such that Pj(z) — P2(z) has only simple zeros. Let

Py P2 Q)
pa(2) + Q(e?)
Then F' is prime.

Therefore, it is natural to consider the primeness and pseudo-primeness of the functions
of the general form (p; + paF')/(ps + paF'), where F is a transcendental meromorphic
function and the p;’s are polynomials. In this paper, common right factors of functions
p1 + poF and ps + p4F' (in the sense of composition) will first be investigated. Then we
shall also prove that the quotient (p1 + p2F)/(ps + paF') is pseudo — prime under some
further restrictions on F and the p;’s as follows.

Theorem 1 . Let g be a common right factor of p1 + p2F' and ps + psF', where the
pi’s are polynomials, po,ps Z 0 and F is a transcendental meromorphic function. If
{p1ps — p2ps, p2,pa} is a linear independent set over C, then g must be a polynomial and
is a right factor of ps/pa.
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Theorem 2 . Let p;’s be polynomials for i = 1,...,4, pa,ps Z 0 and F be a tran-
scendental meromorphic function with at most a finite number of poles. If pa/py is not a
constant, then (p1 + p2F)/(p3 + paF) is pseudo-prime.

Remark: If py/p4 is equal to a non-zero constant, then (p; + poF')/(p3 + paF') may
not be pseudo — prime. For example, let f be a transcendental meromorphic function such
that F' = f(e?) is of finite order. Then (1+ F)/(2+ F) = [(1 + f)/(2 + f)]oe?, which is
not pseudo — prime. However, we can still draw the same conclusion under some further
restrictions on F' and the p;’s.

Theorem 3 .  Let F' be a periodic entire function of finite order, p1,ps and p be three
polynomials. Let Q(z) be the canonical product of the common roots of p1+pF and pa+cpF,
where ¢ is a non-zero constant. If Q/p is not a constant, then (p1 + pF')/(p2 + cpF) is
pseudo-prime.

Corollary 1 .  Let p1,p2 be two polynomials and not both of them are constants. Sup-
pose that H is a periodic entire function of finite order. Then F = p1 4+ poH 1is pseudo-
prime.

The proof of Corollary 1. If ps is a constant, it reduce to a result of F. Gross [?].
Suppose that py is not a constant. Consder 1 +1/F = (p; + 1+ poH)/(p1 + p2H) and we
apply Theorem 3 to 1 4+ 1/F and conclude that 1 4+ 1/F is pseudo-prime and hence is F'.
As another application of Theorem 3, we can confirm the following result which was
conjectured by J.H.Zheng in [?].

Theorem 4 . Let H be a periodic entire function of finite order. Then for any non-
constant rational function R(z), F(z) = R(2)H (z) is pseudo-prime.

It is natural to conjecture the following :
Conjecture : For any non-constant rational function R(z) and periodic entire func-
tion H, R(z)H(z) is pseudo-prime.

2 Some Lemmas.

Lemma 1 [?]. Let f be a meromorphic function. Then for all irreducible rational func-
tions in f,

> ai(2)f
R(z,f) = 27
LS I YE T
with meromorphic coefficients a,( ), b q¢(2) # 0 such that

) (Z) and a’p( )a
T(r,a;) = o(T(r, f)), T(r,bj) =o(T(r,[))i=
T(r,R(z, f)) = maz(p,q)T(r, f) + o(T(r, f))-

Remark : In the sequel, for any function g satisfying T'(r,g) = o(T(r,f)) as r —
00,7 ¢ E (a set of finite linear measure) will be called a small function of f.

b
0,...,p, J=0,...,q. Then we have



Lemma 2 [?]. Let f be a transcendental meromorphic function, g be a transcendental
entire function and R be a nonconstant rational function. Then the function f(g(z))—R(z)
has infinitely many zeros.

Lemma 3 [?]. Let f be a meromorphic function and g be a transcendental entire function.
If py(g) < o0, then py = 0.

Lemma 4 [?]. Let f be a meromorphic function and g be an entire function such that
Prg) < 0o. Let f = f1/fe, where f1, fo are the canonical products formed by zeros and
poles of f respectively, then for € > 0 and arbitrary large r,

log M (r, fi(g)) +log M(r, f2(g)) < r*
where k = (1 + €)(py(g) + €) + pg + €. In particular py, 4 < oo fori=1,2.

In order to investigate the common right factors of functions p; + poF and ps + paF',
we prove the following lemma which is of some interests.

Lemma 5 . Suppose F' and G are two transcendental meromorphic functions which sat-
isfy the equation

Zaij(z)Fi(z)Gj(z) =0,
irj

where a;j(z)’s are linearly independent polynomials over C. If g is a common right factor
of F' and G, then g must be a polynomial.

Proof. Suppose that g is transcendental and we write F' = fi(g) and G = fa(g), fi, f2 are
meromorphic functions. Then the above equation becomes }°; ; aij(2) fi(9(2)) f(g9(z)) = 0.
Since g is transcendental and a;;(2) are polynomials, 3>, ;T'(r,a;j) = o(T(r,g). Then we
can apply the well known result of N.Steinmetz ([9] or [5]) and obtain a set of polynomials
Pij(z), not all identically zero such that 3=, ;a;;(2)Pij(g(2)) = 0. By rearranging the
expression according to the power of g, we have

> cnl(2)g"(2) =0,
k

where ci(z) is a linear combination of the a;;(z)’s over C. By Lemma 1, we must have
ci(2) = 0 for all the k’s. Since at least one of the P;;(z) is not identically zero, one of
the ci(2) is a non-trivial linear combination of the a;;(2)’s over C. This contradicts our
hypothesis on the a;;(z)’s.

Remark : The assumption of linear independence on the a;;(z)’s is essential. For
example,

2

cos’z +sinz =1

but cos z and sin z have the non-polynomial right common factor e?.

The following lemma is implicitly contained in the proof of the result obtained by F.
Gross and C.F. Osgood in [?], which is a key factor used in the proof of Theorem 3. By
observing the fact that > 7' | T'(r,h;) = o(T(r,q)), Yiey T(r,9;) = o(T(r,g)) allow us to
choose M =1 in [6,p.291]. and together with the lemma in [6,p.288], we can obtain the
following result.



Lemma 6 . Suppose that g is a nonconstant entire function, and that 1; Z0 for 1 <4 <
n, are entire functions and n > 2 is a natural number. Also, f; Z0 and h; Z0(1 <i < n)

are meromorphic functions, f;’s are analytic at z = 0, f1(0) # 0. Suppose further that
i=1 T(r,hi) = o(T(r,g)) and 33—, T(r ;) = o(T(r,g)). If

n

> filgpi)hi(z) =0,

i=1
then there exist n functions P;(z,w) not all zero, where each P;(z,w) is a polynomial of

w with coefficients are functions of ¥1,v¥9,Ys, ..., Yn, such that

n

> Pi(z,9)hi(z) =0,

=1

where degP;(z,w) (in w) < (n—1) fori=1,...,n, P # 0 and P\ f;i(ig) — Pifi1(¢19)

vanishes to at least the order n at g = 0.

3 Proofs of Theorems.

The proof of theorem 1.  Let p1 + poF = f1(g) and p3 + paF = f2(g), where f1, fo are
meromorphic functions. Then by eliminating F', we have

P1(2)pa(2) — pa(2)p3(2) = pa(2) f1(9(2)) — pa(2) f2(g(2)) - (1)

By applying Lemma, 5, one can conclude that g is a non-constant polynomial. Therefore,
f1 and f5 are transcendental for F' is transcendental. Since p;’s are polynomials, we still
have Y}, T'(r,p;) < O(T(r,g)). Now by the well known result of N.Steinmetz ([9] or [5]),
there exist not all identically zero polynomials A(z), B(z) and C(z) such that

(P1pa — pap3)(2)C(9(2)) = pa(2)A(9(2)) — p2(2)B(g(2)) . (2)

By a simple elimination, we conclude from (1) and (2) that

pa(2)(/1C — A)(9(2)) = p2(2)(f2C — B)(9(2)) -

The fact that f1, fo are transcendental and one of A, B or C' # 0 ensure that (f1C—A)(g(z))
and (foC — B)(g(z)) are not identically zero. Hence g is a right factor of ps/ps .

The proof of theorem 2. Suppose that (p1 + p2F')/(p3 + paF) is not pseudo — prime.
Then (p1 + p2F)/(ps + paF) = f(g) where f is a transcendental meromorphic function
and g is a transcendental entire function. Therefore,

p2 p1t+pF po
flg -2 = Drpel e
D4 p3+psF py

P1p4 — P2P3

pa(ps + paF)



which has only a finite number of zeros. This contradicts Lemma 2.

The proof of theorem 3.  We may assume ¢ = 1. Suppose (p1 + pF)/(p2 + pF) is
not pseudo — prime. Then (p1 + pF)/(p2 + pF) = H(K) = H(K)/H>(K), where H
is transcendental meromorphic, K is transcendental entire and H;, Ho are the canonical
products formed by zeros and poles of H respectively. Note that F' is of finite order, then
so is (p1 + pF)/(p2 + pF'). Hence pg = pu, = pm, = 0 by Lemma 3 and 4. Since H; and
Hj; have no common zeros, so do Hi(K) and Hy(K). Therefore, the zeros of Hi(K) and
Hy(K) are zeros and poles of (p1 + pF')/(p2 + pF') respectively. Hence, we have

p+pF = H(K)ePQ (3)
pe+pF = Hy(K)efQ, (4)

where R is an entire function and @ is the canonical product of the common roots of
p1 + pF and py + pF. Clearly, @ is a polynomial and divides p; — ps in the product sense.
By Lemma 4, the order of H;(K) is finite. Therefore from (3) , eft is of finite order and
hence R must be a polynomial. Subtracting (4) from (3) and then dividing both sides by
eR, we get

P1 — P2 o R

Q

Clearly R can’t be a constant, otherwise K will be a polynomial. Now if H; — Hy has
more than one distinct zeros, then as K is transcendental entire, by Picard’s theorem ,
(Hy — H2)oK would have infinitely many zeros which is impossible for the number of zeros
of (p1 — p2)/Q is finite.

Since the order of Hy — Hy is zero, we must have H; — Hy = (z — a)" and then
K(z) = a4 P(2)e #)/" where a is a complex number and P(2)" = (p; —p2)/Q for some
natural number n. By considering H;(z+ a) instead of H;(z), we may assume a = (. Since
H, and Hj have no common zeros, we may also assume H;(0) # 0. Now

p1(2) + p(2) F(2) = Hi(P(2)e” /)R Q(z) .
Eliminating F' by using the fact that F is periodic with period 1(say), we get
Hy(P(z +1)e” REFDMRETNQ(2 4+ 1)p(2) — Hi(P(2)e” MR Q(2)p(2 + 1)
+p1(2)p(z +1) —=p1(z + 1)p(2) =0 .
If we let S(z) = R(z + 1) — R(z) and multiply both sides by e f(2) then
H\(P(z +1)e” "M BDQ(z + Dp(2) — Hi(P(2)e )Q(z) ( )
+(p1(2)p(z + 1) = p1(z + 1)p(z))e )

Set f1 = Hi, fa = H1,f3 = 2" h1(2’) = 5PQ(z + p(2), ha(2) = —Q(2)p(z + 1)
and h3(z) = p1( ) (z +1) = pi(z + Dp(2). Also let g(z) = e R, 4y (2) = P(z +
Ve~ R/ [e=REM 4y (2) = P(2),4h3(2) = 1.

= (H1 - HQ)OK .

Then the above equation becomes

fi(rg)ht + f2(2g)he + f3(139)hs =0 .



Since deg(R(z + 1) — R(2)) < degR(z),T(r,41) = o(T(r,g)) and T(r,h1) = o(T(r,g)).
It is then easy to check that 323 | T'(r,h;) = o(T(r,g)) and Y3, T(r,4;) = o(T(r,g)).
Therefore by Lemma 6, there exist polynomials P (z,w), P»(z,w) and Ps(z,w) of degreeP;
(in w) <3 —1 =2, with coefficients being functions of ); such that,

Pl(zag)hl +P2(Z,g)h2+P3(Z,g)h3 EO? (5)
where the P;’s satisfy the conditions that
P fi(¥ig) — Pifi(4rg) (6)

vanishes to at least order 3 at ¢ =0 for : = 2,3 and P; # 0. We rewrite (5) as
Pi(2,9)e*?Q(z + 1)p(z) — Pa(2,9)Q(2)p(z + 1) + P3(2,9)h3 =0 . (7)

Let Pi(z,9) = Y2_ycin(2)g® and Hy(z) = 270 a;z’. Then it follows from the fact
that Pj fo(1pog) — P> f1(11g) vanishes to at least order 3 at ¢ = 0, we have for m = 0,1, 2,

m m—1
C100m¥Pg" + Cl1am—-19y 4+ -+ cimao

= co0amP + co1am_197 4+ camap - (8)

On the other hand, from P, f3(129) — P3fi(119) = P1g" — P3f1(¢1g) which vanishes
to at least order 3 at g = 0 gives immediately that c3p =0 as n > 1.

Now rearrange (7) according to the powers of g, we get a polynomial equation in g with
small functions of g as the coefficients. By Lemma 1, these coefficients must be identically
zero and we have for m = 0,1, 2,

e (2)e5PQ(z + Dp(2) — can(D)Qp(z + 1) + can(2)hs = 0. (9)

Since c3g = 0, for m =0,
c10e*@Q(z + 1)p(2) — c20Q(2)p(z +1) =0 . (10)
From (8), we have cjgag = copap. Note that ap = f1(0) = H1(0) # 0, therefore
c10(e*?Q(z + 1)p(2) — Q(2)p(z +1)) =0 . (11)

If e5(*) = 1 and ¢19 # 0, then Q(z+1)/p(z+1) = Q(z)/p(z) which implies that Q(z)/p(2)
is a constant and this contradicts our assumption. Therefore either e5(*) # 1 or ¢19 = 0.
If e3(2) £ 1 | then (e°®Q(2)p(z + 1) — Q(z + 1)p(2)) # 0 and therefore ¢;o = 0.

Hence c19 = co9 = 30 = 0. ¢10 = c30 = 0 and the coefficient of g in Pg" — Psf1(119)
is identically zero implies that c3; =0 .

From (8) again we have c11a9 = ¢21a0, from this together with c3; = 0, (9) becomes

en(*9Q(z + p(z) — Q@)p(z +1)) =0. (12)



This allows us to repeat the above argument to conclude that ci;; = co; = 0. Then
repeating the argument once more, we have c¢;; = 0 for 1 = 0,1,2. This contradicts the
fact that P(z) Z 0.

The proof of Theorem 4. Let R(z) = p1(z)/p2(z), where p; and p, do not have any
common zero. Consider 1 +1/F = (pa +p1H)/(p1H). Let Q(z) be the canonical product
of the common roots of po+p1 H and py H. Then clearly Q(z) divides po in product sense.
If one of p; and @ is non-constant, then ()/p; is non-constant as p; and p, do not have
any common zero. Now by Theorem 3, we conclude that 1+ 1/F is pseudo-prime and so
is F.

If both p; and @ are constants (say p; = 1), then H and py + H do not have any
common zero and therefore H(z)/p2(z) has finitely many poles.

Suppose that H(z)/p2(z) = fi(g), where f; is a transcendental meromorphic function
and ¢ is a transcendental entire function. Using the fact that H(z)/p2(z) has finitely
many poles, we can conclude that g(z) = a + P(z)e KG&)/™ and f1(2) = f(2)/(z — a)"
where P(z),K(z) are polynomials, K(z) is non-constant and f is a transcendental entire
function of zero order with f(a) # 0. By considering f(z + a) instead of f(z), we may
assume a = 0. Note that P(2)" = ps(z) where n is an natural number. Hence, we have

H(z) = f(w)o(P(z)e” ()/m)ek ()
The fact that H(z) is periodic (say with period 1) gives

FW(2)g(2))e’? — f(g(z)) = 0, (13)

where B(z) = K(z + 1) — K(2) and 9(z) = P(z + 1)/P(z)e #*)/" is an meromorphic
function with T'(r,¥)=0(T'(r,g)). By applying Lemma 6, there exist two polynomials of
w, Py(z,w) £ 0, Py(z,w), with degreeP; (in w) < 2—1 =1 and cofficients being functions
of 1) such that

Pi(2,9(2))e’®) = Py(z,9(2)) = 0

and then,
Po(2,9) _ s
Pl(za g)

By Lemma 1, this is impossible if one of degreeP; (in w) # 0. Therefore, both of
degreeP; (in w) = 0 and hence P;(z,g) = c;i(z) where ¢;(z) is a function of 1. Using the
fact that Py f(g) — P»f(1g) vanishes to at least order 2 at g=0 and by argruments similar
to the proof of Theorem 3, we can conclude that ¢; = ¢ and hence e®(*) = 1. Then
Equation (13) becomes

f(W(2)g(2)) = f(g9(2)), (14)

where ¢(z) = P(z + 1)/ P(z).
Now we can choose a constant A such that the equation 9(z)g(z) = A has infinitely
many roots, say {a;}. Note that g(a;) = A/¢(a;) which converges to A as i trends to



infinity and from (14), f(g(a;)) = f(A). By the uniqueness theorem, we have f(z) = f(A)
which is impossible. Finally, we conclude that R(z)H (z) is pesudo — prime.
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