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The Critical Values of a Polynomial

A. F. Beardon, T. K. Carne, and T. W. Ng

Abstract. It has been known for a long time that any real sequence yj, ..., yp—1 is
the sequence of critical values of some real polynomial. Here we show that any complex
sequence wi, ..., Wy—1 is the sequence of critical values of some complex polynomial.

1. The Problem

The critical points of a polynomial p are the solutions z; of p’(z) = 0, and the critical
values of p are the numbers p(z;).If yi, ..., y, are given real numbers, then a necessary
and sufficient condition for there to exist a real polynomial p of degree n 4 1 with real
critical points x; satisfying x; < --- < x,, and critical values y; = p(x;), j =1,...,n,
is that the numbers (—1)*(yx — yx+1), & = 1,...,n — 1, are all nonnegative or all
nonpositive (see [3], [7], and also [8]). As any real sequence yj, ..., Y, can be reordered
so as to satisfy this last criterion, it follows that any real sequence yi, ..., y, is the
sequence of critical values of some real polynomial. In an editorial footnote to [3], A. W.
Goodman asked whether every complex sequence wy, . .. , Wy, is the sequence of critical
values of some complex polynomial of degree n + 1. We shall show that it is.

Theorem 1.1. Let wy, ..., w, be any sequence of complex numbers. Then there is a
polynomial p of degree n + 1 whose critical values are w, . .., wy.

Clearly w is a critical value of a polynomial p if and only if the equations p(z) —w = 0
and p’(z) = 0 have a common solution, and this is so if and only if their resultant
Res(p —w, p’) is zero (see, e.g., [6, p. 52]). Although this gives (explicitly) a polynomial
whose roots are the critical values of p (and whose coefficients are polynomials in the
coefficients of p), we are unable to use this to good effect.

Given a polynomial p, the polynomial z — p(az + b) has the same critical values as
p and the same ramification over these critical values. Thus, by passing to p(az + b) for
some suitable a and b, we may confine our attention to polynomials p that are normalized
by the conditions p(0) = 0 and p’ is monic. Given any vector u = (uy, ..., u,) in C",
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the unique polynomial p, normalized in this way, and with critical points u, is

(L.1) ) =fo TR A

and the sequence of critical values of p, is givenby v = (vy, ..., v,), where Vi = pu(u;).
We now define the map 6 : C* — C” by 6(u) = v; explicitly,

Oy, ... un) = (Pu(U1), ..., pu(Un)) = (v1, ..., vn),

and this takes critical points to critical values (via normalized polynomials). As each
v; is (obviously) a homogeneous polynomial in the u;, 6 is holomorphic in C”, and in
Section 2 we use some elementary results on several complex variables to show that
8(C") = C"; this will prove Theorem 1.1. This proof has its origins in [3] (where only
real polynomials are considered), and our aim is to give as simple a proof as possible.
Our second result, which we prove in Section 3, describes the action of 8 in greater
detail.

Theorem 1.2. The map 6 : C* — C" is holomorphic, open, closed, proper, and finite.
Further, for each v in C" there are exactly (n + 1)" points u such that 6 (u) = v.

In Section 4 we illustrate Theorems 1 and 2 with a brief discussion of cubic polyno-
mials, and in Section 5 we give a brief discussion of the polynomials p, in the context of
the equivalence classes of topologically equivalent polynomials introduced by Arnold
in [1].

It is also possible to construct a polynomial with given critical values by a topological
argument. This approach uses ideas introduced by Hurwitz and developed, for example,
by Patterson [10]. Suppose that we wish to construct a polynomial with critical values
at the points w;, wy, ..., w in the Riemann sphere C,,. We first construct a compact
topological surface S and amap f : § — C which is a local homeomorphism at each
point except those in f _l(wj) for j =1,2,...,k. Then we can put a unique Riemann
surface structure on § so that f is analytic. If the Euler characteristic x (S) is 2, then §
is homeomorphic to a sphere and hence the Riemann Mapping Theorem shows that S is
conformally equivalent to C,,. Consequently, there is an analytic map f : Co, = Coo
with critical values at w;, wy, ..., wy, and this map f must then be a rational function.
If f has degree d, and oo is a critical point of order d, then f must be a polynomial. We
give the details of this argument in Section 6.

2. The Proof of Theorem 1.1
We begin with a straightforward, but important, property of the map 6.

Lemma 2.1. With 6 as above, 6(u) = 0 if and only ifu = 0.

Proof. For any a = (ay,...,a,) in C* we write [la]| = (|la;]®> + --- + |aa|D)YV2 If
u = 0, then p,(z) = z"*'/(n + 1) so that for each j, v; = p(0) = 0; thus, 6(u) = 0.
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Conversely, suppose that (x) = 0, and that the distinct u; are written as ay, ..., as,
where there are m; of the u; corresponding to a;, and so on. Then

p.@)=@—a)™ - (z—a)™,

where the a; are distinct and m; + - -+ 4+ m; = n. This shows that p®(a;) = 0 for
k=1,...,mj,and as p,(a;) = 0, we see that (z — aj)"'i+l divides p,(z). This implies
that deg(p,) > deg(p)) + s and from this we see that s = 1 and p,(z) = (z — a1)".
Integrating this from O to z gives p,(z), and noting that p,(a;) = 0 (because 8(u) = 0)

we find that a; = 0; thus u; = - - - = u, = a; = 0 as required. ]
If p,(uy), ..., pu(u,) are nonzero then so are u;, ..., u, (because p,(0) = 0) and,
clearly, if p,(u,), ..., pu,(u,) are distinct then so too are uj, ..., u,. This means that if

we define V by
2.1 V={(z1,...,2,) € C" : 21, ..., 2, nonzero and distinct},

then #~1(V) C V. In some sense, the simplest part of the action of @ is its restriction to
6~1(V); that is, the map 6 : 6~ 1(V) — V.

We come now to discuss the topological properties of the map 6, but first we need to
describe some general results. Let f : X — Y be a continuous map between topological
spaces. Then f is open if f maps every open set to an open set, and closed if it maps
every closed set to a closed set. Next, we say that f is a covering map if each point x in
X has a neighborhood N such that the restriction of f to N is a homeomorphism (this
definition is that used in Riemann surface theory and differs from that commonly used
in topology). Clearly, any covering map is an open map.

We shall also need the notion of a proper map, and of fibers. We say that f is proper
if f~1(K) is compact whenever K is. Finally, a fiber (of f) is a set of the form f~1(y),
where y € f(X), and we say that f is finite if each fiber is a finite set. It is known that
if f : X — Y is continuous, and if X and Y are locally compact Hausdorff topological
spaces, then f is proper if and only if f is closed and each fiber f~!(y) is compact
[9, p. 76]. For the convenience of the reader we shall now proile that part of this that is
crucial to our argument. Throughout, we use A and A° to denote the closure and interior,
respectively, of a set A.

Lemma 2.2. Suppose that X and Y are locally compact Hausdor{f topological spaces,
and that f : X — Y is continuous and proper. Then f is closed.

Proof. Let E be any closed set in X, and suppose that z € f(E). It suffices to show
that z € f(E). As Y is locally compact, there exists a compact neighborhood U of z.
Now take any open set W containing z; then W N U° is an open neighborhood of z and
so contains a point of f(E). This means that W meets U N f(E), and we deduce that

(2.2) zeUN f(E).
Next, it is immediate that

(2.3) Unf(E)= f(f~'(U)NE).
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As f is proper, f~!(U) is compact. As X is Hausdorff, f~!(U) is closed, and it follows
from this that f~!(U) N E is compact and, hence, from (2.3), that U N f(E) is compact
in Y. As Y is Hausdorff, U N f(E) is closed in Y so, from 22),zeUnN f(E). In
particular, z € f(E) as required.

We now return to discuss the topological properties of the map 6.

Lemma 2.3. The map 6 : C* — C" is proper.
Lemma 2.4. Themap 6 : 6~'(V) — V is a surjective covering map.

Lemmas 2.3 and 2.4 lead easily to Theorem 1.1. By Lemma 2.4, 8(C") contains V.
By Lemmas 2.2 and 2.3, §(C") is a closed subset of C”, and so contains the closure
of V, namely, C". Thus 6(C") = C”, and this proves Theorem 1.1 subject to proving
Lemmas 2.3 and 2.4.

Proof of Lemma 2.3. Let K = {u € C" : ||u|| = 1}. As 8 is continuous in C", the
infimum 7 of ||@(u)|| over the compact set K is attained at some point of K, and 7 #0
for, otherwise (by Lemma 2.1), we would have 0 in XK. We deduce that > 0.

Now take any nonzero u in C” and let A = |lu||~!. Then Au € K so that [16(Aw)| >
n. Finally, let g be the polynomial constructed as in (1.1) but using Ax instead of u,
and let v' = 6(Au). A simple change of variable gives g(z) = A"*! Pu(z/A) so that
vj’. = q(Auj) = )J'“vj. This shows that 6(Au) = A""16(u) and, hence, that ||0(u)|| >
nllw||**!. In fact, we have the double inequality

(2.4) nllul™ < 0@l < 2" ul"*,

for the upper bound of || (u)|| here is a trivial consequence of the definition (1.1) of
Pu (because when we evaluate v; using (1.1), we can integrate along the segment from
0 to u;). Finally, if E is a compact subset of C", then E is bounded and closed. As 6
is continuous, #~!(E) is closed and, from the lower bound in (2.4), it is also bounded.
Thus 6 is proper, and this completes the proof of Lemma 2.3. |

Proof of Lemma 2.4. We prove first that the Jacobian J, is nonzero at each point of
V.As 0~1(V) C V, this will show that J, # 0 on 8~1(V). Let the Jacobian matrix of 6
be (6;). Then

v; 0 i s -
9,-j=—v=—(/ (w—uﬂ---(w—u,,)dw):—/ Pu(w) dw;
du;  du; \Jo 0 W— U

this holds even when i = j because (under appropriate hypotheses)

d (* % Gt
Efo f(x,t)a't_fo S dt+ f(x, %).
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Now det(6;) # 0 at a point u in V if the columns of (6;) are linearly independent there,

so suppose that fori =1, ..., n, Zj w;6;j = 0, where the 1; are some constants. Then
n ui / 7 n / Ui
b p(w) ' P, (w) :
25 0= ,u-/ = dw=/ Wi dw = f(w) dw,
j; T w—uy 0 ,; "w—u; 0
say, where
n
(z=uy)-~-(z2—un)
2.6 Z) = i ’
(2.6) f@ j;u, e

a polynomial of degree n — 1. Now let

Fo) = f it .
0

Then F : C — C is a polynomial of degree n with F(0) = 0, and (2.5) implies that
F(u;) = 0 for each j. As u € V, the u; are distinct and nonzero so that F has n + 1
zeros (namely, 0, uy, ..., u,). We deduce that F is zero throughout C, hence, so too is
its derivative, namely, f. If we let z — u; in (2.6), and recall that the u ; are distinct, we
see that u; = 0. As this holds for all i, we see that det(6;) #0in V.

The Inverse Mapping Theorem (see, e.g., [5, p. 121] or [4, p. 17]) shows that if D is an
open subsetof C”, andif f : D — C" is holomorphic with Jacobian J '+ nonzero ata point
u*in D, then the restriction of f to some open neighborhood of u* is a homeomorphism.
As 6 is continuous 8~!(V) is open, and it follows from this that 8 : ! (V) > Visa
covering map.

It remains to show that 0 : 6-1(V) — V is surjective. Let W = 0871 (V)). As
6~'(V) is open, 6~1(V) C V, and the restriction of 8 to V is an open map, so W is an
open subset of V. We shall now show that W is relatively closed in V. Suppose, then,
that wy, w,, ... are points in W that converge to a point w* in V. We may assume that the
w; lie in some compact neighborhood K of w*, where K C V, and so, by Lemma 2.3,
there are points z; lying in the compact set §~!(K) with 0(zj) = w;. By passing to a
subsequence, we may assume that z; — z*, say, and then by continuity, 6(z*) = w*.
As w* € V,s0z* € 71(V), so that w* € W as required. As W is relatively open
and relatively closed in V, and as V is arcwise connected (this is clear), we deduce that
W = Vor W = 0. However, (1, @, ..., " '), where w = exp(27i/n),isin8~1(V), so
that W # @. We deduce that W = V and this shows that 6 : ~1(V) — V is surjective.
This completes the proof of Lemma 2.4 and, therefore, also the proof of Theorem 1.1.1

3. The Proof of Theorem 1.2

A subset W of C" is an analytic subset of C" if there are a positive finite number of
complex valued functions fi, ..., f, holomorphic in C*, such that

W={zeC": fi@=---= fi(z) =0}.

The union of a finite number of analytic sets is an analytic set so, for example, the
complementC(V) of V givenin (2.1)isan analytic set. Indeed, if we define the coordinate
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functions 7; by (z1,...,2,) > z;, then C(V) is the union of the set of zeros of each
of the functions 7; and 7; — 7;, where i # j. It now follows that 6~1(C(V)) is an
analytic set and, hence, that its complement, namely, 8! (V'), is arcwise connected and
dense in C" (for details, see [2, pp. 14—15]). An easy argument using Lemma 2.4 and
the connectedness of 6~!(V) now shows that the cardinality of each fiber ! (v) is
independent of v in V, and this is the motivation for Theorem 1.2.

We have already seen that 6 is holomorphic, proper, and closed; we shall now show

that it is finite. Let & = (6, ..., 6,), so that each 6; is a homogeneous polynomial of
degree n + 1 in the variables u;, and choose any v in C". As
07 (W) ={ueC :6,(u) —vy =+ = 6,(u) — v, =0},

we see that #~!(v) is an analytic set. It is also compact (as € is proper), and as every
compact analytic set is finite (see [2, p. 31] and [9, p. 235]), we deduce that 6 is a finite
map.

Now not every holomorphic nonconstant map from C” to itself is open (e.g., the map
(z, w) = (z,zw) is not). However, it is known that if f : C* — C" is holomorphic,
and if z is an isolated point of a fiber f~!(v), then f maps each open neighborhood of z
onto an open neighborhood of v (see, e.g., [5, Theorem 11, p. 121]). It follows that any
finite holomorphic map is open; in particular, 6 is an open map. Note that this argument
does not require the Jacobian to be nonzero so it applies equally well to points in C(V).

It remains to show that for each v in C” there are (with an appropriate count of
multiplicities) exactly (n + 1)" points u such that #(«) = v. The appropriate count of
points in 6! (v) that takes into account multiple zeros is given by Bézout’s theorem as
stated in [9, pp. 431-432]. We first write any point in C"*! as (ug, u;, ..., 4,), and then
embed C” in C**! by identifying (u,, ..., u,) with (1, uy, . .., u,). Given v in C" we
now wish to count the number of projective solutions of the » homogeneous equations
(each of degree n + 1)

n+1_0
’

pu(ui)—viuo = i =1, el

The number of projective solutions of these equations is finite (because @ is proper), and
so Bézout’s theorem is applicable; this says that there are exactly (n + 1)” solutions with
due count of multiplicities, and this completes the proof of Theorem 1.2. [ |

4. Cubic Polynomials

We illustrate Theorems 1 and 2 with a brief discussion of the map 6 : C* — C" when
n = 2 (and p, is a cubic polynomial). A straightforward calculation shows that

4.1) O(u1, u2) = §(uiBuz — u1), u3Guy — uz)),
and that

2 2
Uy —uy/2 ui/2
0’ (uy, uz) = ( : ) 5]

u§/2 Ujuy — u%/
so that

Jo(uy, uz) = det®’ (uy, uz) = —Juyua(uy — us)>.
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Thus, in this case 6~1(V) = V, and Jy(u) # 0 if and only if u € V. The Jacobian Jy
has rank 1 at points where u; = u, # 0 and is the zero matrix at the point 0 in C2.

According to Theorem 1.2, for each general point (v;, v3), there are exactly nine
vectors (41, u) such that (p, (u;), p.(u2)) = (v1, v2) (itis easy to see this directly). For
example, consider u in 9‘1(%, g) and, for brevity, write (x, y) = (u;, uz). Then, from
(4.1), we have

4.2) P2@y-n=1, yC-»=5,

so that y = (x3 + 1)/3x2, and substituting this expression in the second equation we
obtain

(X = DEX25X 4+ 1=0, X = x3.

This shows that there are exactly nine values of x for which 6(x, y) = (%, &) and for
each such value of x there is a unique value of y determined by (4.2).

Let us now find the cardinality of the fibers 61 (v;, v;) at points (vy, v2) in C(V).
First, suppose that 6(x, y) = (v, v), where v # 0. Then x2(3y —x) = v = y?(3x — ),
so that x = y and 2x> = v, and the fiber 8! (v, v) contains exactly three points. Next, if
(x,y) € 67 (a, 0), then y?(3x — y) = 0 and this gives rise to exactly six points (x, y).
Finally, =1 (0, 0) contains only one point (see the proof of Lemma 2.3).

5. Topologically Inequivalent Polynomials

In [1] Arnold defines two polynomials p and g to be fopologically equivalent if there is
a homeomorphism £ of the Riemann sphere onto itself such that p o h = g. Now such a
homeomorphism 4 must be of the form A(z) = az + b (for, except at the critical values
of p, h must, by continuity, be locally a branch of p~! o g, and isolated singularities are
removable for univalent maps). It follows that any polynomial is equivalent to one of
the polynomials p, defined in Section 1. Topologically equivalent polynomials have the
same critical values and also the same generators of their monodromy groups.

Suppose now that ¥ and w are in C" and that p, and p,, are topologically equivalent,
and of degree n + 1. Then, for some complex a and b, p,(az + b) = p,(z). As p), and
pl, are monic, this shows that a"*! = 1. Also, as p,(b) = p,,(0) = 0, there are exactly
n + 1 choices for b. Thus each topological equivalence class contains exactly (n + 1)?
polynomials of the form p,. It follows from Theorem 1.2 that, given any v in C", there
are exactly (n + 1)"2 topologically inequivalent polynomials p, with v as their vector
of critical values, and as this is indeed the number of topological equivalence classes of
inequivalent polynomials given in [1]. In particular, each equivalence class is represented
by some p,.

Finally, we have considered vectors u of critical values so as to handle multiple roots
properly, and this means that we have distinguished between two vectors of critical
values (one obtained by permuting the components of the other) which yield the same
polynomial p,. To remove this unnatural distinction we could work with quotient spaces
with respect to the transformation group induced on C* by permuting the components
of each vector in the natural way.
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6. A Topological Construction

Consider first a nonconstant analyticmap f : § — Cy from a compact Riemann surface
S into the Riemann sphere. As f has only finitely many critical points, it has only finitely
many critical values, and we let Q = {w;, w,, ..., wg} be the set of its critical values,
where the w; are distinct. Now f has degree N, say, where N > 1, and for each critical
value wy, the inverse image f~!(wy) has less than N points, say N — §(wy) points. We
call § (wy) the deficiency of f at wy. Since f has degree N, we have

Y. deg(f;) =N, Y [deg(f;2) — 11 = 8(wy).

z€f~  (wk) z& f~1(wk)

The Riemann-Hurwitz formula shows that

X(8) = Nx(Cs) — Y (deg(f;2) — 1),

2€Cxo

and as x(C) = 2, this gives
(6.1) > 8(wi) = 2N — x(S).
k

For each w € Cy\ O, the inverse image f ~!(w) consists of exactly N distinct points,
and the restriction of f to S\ f~!(Q) is an N-fold regular covering map; thus each curve
in C\ Q lifts to N curves in S\ f ~1(Q). Choose a base point b in Co,\ Q. Then the set
B = f~!(b) has exactly N points, say by, b, ..., by. Any curve y in Co\ @, which
begins and ends at b, has a unique lift I',, which begins at b, and ends at another point
by of B, and the map n +— o (n) is in the group Sy of all permutations of {1, 2, ..., N}.
The monodromy theorem shows that the permutation o depends only on the homotopy
class of ¥ in Cs\Q, and the group of such permutations o is the monodromy group
of f.

For each k, choose a curve «; from b to the critical value w;. Consider now the path
v« which follows «; until just before wy, then follows a small circle winding positively
once around wy, and then returns to b along . The corresponding permutation oy has
a cycle of order deg( f; z) for each value of z in f~!(wy), and these cycles are mutually
disjoint. If we replace o by any other path from b to w, then oy changes to a conjugate
permutation and so the conjugacy class [0y ] of oy is completely determined by the critical
value w;. We will say that oy is a permutation associated with the critical value wy.

Recall that the conjugacy classes in the symmetric group Sy are determined by the
sizes of the orbits or, equivalently, by the lengths of the disjoint cycles of the permutations.
Thus specifying the orders of all the critical points z which map to wy is equivalent to
specifying the conjugacy class of the permutation ;. When the permutation oy has orbits
of lengths dy, d,, . .., dy, the deficiency §(wy) is ), (dn — 1). We will also write this
as 6([ox]) and, as ), d, = N, we see that

8([ox]) = N — (number of orbits of oy ).

The permutations oy, 03, ..., ox have to satisfy a compatibility condition. If we re-
order the points wi, wa, ..., Wk appropriately, the product path yg - yg—1----* Y2 Y1»
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which follows first y;, then y,, and so on up to Y, will be null-homotopic in C,\ Q.
Therefore,

(6.2) OkOg—1--+0201 = I,

where I is the identity permutation in Sy.
We will now show that the existence of permutations satisfying (6.2) is also sufficient
for there to be an analytic function with prescribed critical values.

Lemma 6.1. Let wy, w,, ..., wg be distinct points in C, and let 01,0, ...,0k be
permutations in Sy that satisfy ox ok _1 - - - 0201 = I. Then there is a compact Riemann
surface S (not necessarily connected), and an analytic map f : S — Cy, which has:

(a) critical values precisely at the points w,, wa, ..., Wg; and
(b) oy as its permutation associated with the critical value wy (k =1, ..., K).

Proof. Let O = {w;, wy,...,wk}. Choose a base point b € C,\Q and paths
ay,...,0g as above; the paths o can and will be chosen so that they meet only at
b, and that their complement A in C, is simply connected. Label the two sides of the
path o as o, and & in such a way that the sides occur in the order

+ = ot - + -
O , 0,0 , 03 ..., 0k, Q)

going positively around b. Now take N copies of A, which we label A(1), A(2), ...,
A(N), and construct a surface S by joining each edge o, (n) of A(n) to the edge a,'f (o(n))
of A(o(n)). This clearly gives a topological surface except possibly at the points of S
corresponding to . However, the condition oxog_; - - - 0201 = I ensures that there are
exactly N points in S corresponding to b and that S is a surface even at these points. It
is also clear that S is compact.

Let f : § — C4 be the map which sends each point of A(n) to the corresponding
point in A. Then f is a local homeomorphism except at the finitely many points of
f~1(Q). Consequently, there is an unique Riemann surface structure on S\ f~!(Q)
which makes f analytic. The points of f~!(Q) are removable singularities for f, so we
now have a Riemann surface structure on all of S with respect to which f : § - Cq
is analytic. It is clear from the construction of § that the given permutations o} are the
permutations of the points in f ~' (b) obtained by lifting the paths y;. Therefore they are
associated with the critical values wy as required. The proof of Lemma 6.1 is complete.

Lemma 6.1 reduces the construction of analytic maps with prescribed critical values,
and prescribed branchings at these values, to the construction of permutations satisfying
the identity oxokg_; - - - 0201 = I.In order to obtain a rational map (or a polynomial), we
must ensure that the Riemann surface S constructed in the proposition is connected and
a sphere. Clearly S will be connected precisely when the permutations o7, 03, ..., 0
are transitive on {1,2, ..., N}, and once this is known, we find that S is a compact,
connected Riemann surface. In this case S is then determined up to homeomorphism by
its Euler characteristic, and this can be calculated from (6.1).

Suppose that we are given points w;, ws, ..., wg in Cy and conjugacy classes
C1,Cs,...,Ck in Sy. In order for there to be a rational function f : C,, — C of
degree N with critical values at w, w», ..., wg and associated permutations oy € Cy,
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(6.1), namely, > 8(Cy) = 2N — 2, must hold. However, this condition is not sufficient.
For example, consider the three conjugacy classes

Ci=0C={(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)} and C; = {3-cycles}

in the group S4. If 07 € C; and o, € C,, then both lie in the subgroup V ={I, (1, 2)(3, 4),
(1,3)(2,4), (1,4)(2,3)} of S4. Hence 03 = (0201) ! must lie in V and so cannot be a
3-cycle. This shows that we cannot always construct a rational function with prescribed
critical values wy and prescribed orders at the points of f~!(wy).

We shall now show that, by contrast, the conditions specified above are sufficient
to construct polynomials with prescribed critical values and branchings. Note first that
when we consider a polynomial of degree N as a rational function f : Co — Cq,
it has a critical point of order N at oo, and it fixes co. We may take oo as wg; then
fY(wg) = {00} and the permutation ok is an N-cycle in Sy. Therefore the permutations
01,02, ...,0k_; mustbe suchthatog_;0x_» - - - 0207 is an N-cycle in Sy. In particular,
8(wg) = N — 1, so that

K-1
D 8w =N-1.
k=1

Conversely, we have the following result:

Theorem 6.2. Let wy, wy, ..., wg_; be distinct points of Cand let C1, C5, ..., Cg_;
be conjugacy classes in Sy, not equal to {1}, that satisfy

K-1
Z 8§(C) =N —1.
k=1

Then there is a polynomial f of degree N, with {w;, w, ..., wg_1} as its set of critical
values, and such that for each k, the permutation o} associated with the critical value
wy lies in Cy.

Proof. Our aim is to construct permutations o} and apply Lemma 6.1. We will proceed
by induction on N. When N = 1, each permutation is the identity and the result is trivial.
Now suppose it is true for permutations in Sy_;. We will regard Sy_; as the subgroup
of Sy which fixes the point N.

Consider, for the moment, any permutation 7 in Sy which has no fixed points. As
all orbits under T must have length at least two, there are at most %N orbits; thus,
8([z]) = LN. As

K-1
N>N-1= 8(Cy),
k=1
it follows that at most one of the conjugacy classes C; can contain permutations with no
fixed points. If there is such a conjugacy class (and there need not be) we may assume
thatitis C;. It follows that in all cases, fork = 2, 3, ..., K — 1, each of the permutations
in Cy has a fixed point and so the conjugacy class

C,,C = Ck N SN—-l
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in Sy_; is nonempty. Now choose any permutation o; € C, which moves N and let
o{ = o1p, where p is the transposition that interchanges N and o, L(N). As o, fixes N
it lies in some conjugacy class C; of Sy_;.

We now apply the inductive hypothesis to the conjugacy classes C}, and as

8(C) =68(Cy) —1 and S =8(C) fork=2.3,....K =1,

there are permutations o, € C for which oy _, - -- 050/ is an (N — 1)-cycle. By con-
jugating in Sy_; we may assume that this (N — 1)-cycle is (1,2,...,N —2, N — 1).
Then we can set oy = o) fork =2,3,..., K — 1 and get

Og-1°++0201 = (Og_;, -+ 0301)p=(1,2,..., N=2,N = 1)p

which is an N-cycle which we call o .

Lemma 6.1 now shows that there is analytic map f : § — C,, from some compact
Riemann surface S with critical points at wy, wy,...wg_; and wx = oo and associ-
ated permutations o0}, 03, ...,0x_1 and og. Since og is an N -cycle, the permutations
oy, 02, ..., 0k _1, Ok certainly act transitively on {1, 2, ..., N}; hence, S is connected.
As the Euler characteristic of § is 2 it is homeomorphic to a sphere. By the Riemann
Mapping Theorem, § is then conformally equivalent to a sphere, and we have now
constructed the desired polynomial map f : Coo - Cu

It is also possible to adapt the above argument to deal with maps from the unit disk D
to itself. Because the disk is not compact, we shall consider only proper analytic maps
f : D — D. These are the Blaschke products:

po-ef](122)

where |w| = 1 and a1, a;, ..., ay € D. The topological arguments in Lemma 6.1 and
Theorem 1.2 now apply, essentially unchanged, to show that for points wy, wa, ..., Wg_1
€ D and conjugacy classes Cy, Cs,...,Cg_; in Sy that satisfy 2.8(C) =N-1
there is a Blaschke product of degree N with critical values at w;, wo, ..., w k—1 and
the permutations associated with wy lying in Cy.

Finally, although the corresponding result fails for the Riemann sphere, as we saw
above, we can always construct rational maps with prescribed critical values w; and
prescribed values for & (w;) even though we cannot specify the conjugacy classes of the
permutations oy. We can do this, for example, by choosing each oy, to be a cycle of length
8(wi) + 1 (the cycles required can be written explicitly); alternatively, the method used
earlier in the paper can be adapted to prove it.
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