TUT/1853/MATH1853/1

UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH1853 Tutorial 1

- 1. Let $A = \{1, 2\}$ and $B = \{1, 3, 5, 6, 7\}$.
 - (a) What are |A| and |B|?
 - (b) Find $A \cap B$.
 - (c) Find $A \cup B$.
 - (d) Write down all the subsets of A.
- 2. Let $A = \{x^2 : x \in \mathbb{Z}\}$ and $B = \{2x 1 : x \in \mathbb{Z}\}$ where \mathbb{Z} is the set of all integers. A student claims that

$$A \cap B = \{1\}$$

because if x belongs to both A and B, then we have $x^2 = 2x - 1$. Solving the equation, we can obtain one solution 1 which also belongs to **Z**. Do you agree? Explain your answer.

3. Compute

$$\frac{d}{dx}\left(\int_0^x \sin(x) \cdot e^t dt\right).$$

4. Compute

$$\int_{1}^{2} \frac{\log_e x}{x} dx$$

by using *integration by substitution*.

5. Compute

$$\int_1^e (\log_e x)^2 dx$$

by using integration by parts.

6. Given that $\sigma > 0$ and

$$\int_{-\infty}^{\infty} e^{\frac{-y^2}{2}} dy = \sqrt{2\pi}$$

 $\operatorname{compute}$

$$\int_{-\infty}^{\infty} \frac{x}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx.$$