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What is Engineering?

• Engineering combines the fields of science (Physics) and mathe-
matics to solve real world problems that improve the world around
us.

• What really distinguishes an engineer is his ability to implement ideas in a cost
effective and practical approach.

• The ability to take a thought, or abstract idea, and translate it into reality
is what separates an engineer from other fields of science and mathematics.

[Taken from http://whatisengineering.com/]
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Mathematics is about proof.

Proof

Words Go up to Sun & Mon

Figure 1: What is Mathematics?

What is Mathematics?

• Mathematics is a language. Language is the dress of thought (Samuel
Johnson). Moreover, the limits of my language are the limits of my world (Ludwig
Wittgenstein).
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Figure 2: The Learning Pyramid.

The Learning Pyramid

• The percentages represent the average “retention rate” of information following
teaching or activities by the method indicate. But the theory is controversial.

[Taken from http://drwilda.com/2013/03/06/what-is-the-learning-pyramid/]
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(0) A Review on Set Theory and Basic Calculus.

(1) Elementary Complex Variables: Arithmetic of complex numbers; Mod-
ulus argument and conjugate; Basic properties and operations of complex numbers;
Argand diagram; Applications in plane geometry; De Moivre’s theorem; Transfor-
mations of the complex plane; Applications to trigonometric identities; nth roots of
a complex number; Complex functions; Relationships between trigonometric func-
tions and hyperbolic functions.

(2)Basic Probability Laws; Random Variables, Probability Distribu-
tion, Expectation and Variance: A review on history of probability; Permu-
tations and combinations; Samples spaces and events; Basic probability rules; The
concepts of conditional probability and independent events; Bayes’ Theorem; The
concepts and examples of discrete and continuous random variables; The concepts
of discrete and continuous probability distribution and its mathematical formulae;
The concepts of expectation and variance; Using the relevant formulae to solve
simple problems.
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(3) Binomial, Geometric, and Poisson Distribution; Normal Distri-
bution: The concepts and properties of the binomial distribution, the geometric
distribution, and the Poisson distribution etc; Applications: calculating proba-
bilities involving those distributions; The concepts and properties of the normal
distribution; Standardization of a normal variable and use of the standard normal
distribution table; Applications of the normal distribution.

(4) Sampling distribution, Point Estimates and Confidence Interval:
The concepts of sample statistics and population parameters; The sampling distri-
bution of the sample mean from a random sample of size n; the concept of point
estimates including sample mean, sample variance; The concept of confidence in-
terval; The confidence interval for a population mean with known and unknown
population variances.
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1 Set Theory*

This section aims to introduce basic knowledge of sets as a language of mathematics.

Definition 1. A set is a well-defined collection of objects.

The keyword here is “well-defined”.

• The set of numbers 1, 2, 3, 4, and 5.

• The set of all cities in Europe.

Clearly there is no ambiguity of what or who belongs to the sets defined. How
about the following sets?

• The set of all beautiful women?

• The set of all young people?

Since beauty or youth for that matter belongs to the eyes of the beholders, it is
not clear who should belong to those sets. The objects of these “sets” are NOT
well-defined here though they can be studied using Fuzzy set theory.
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1.1 Elements

Definition 2. Given a set, the objects in the set are called the elements of
the captured set.

Thus in the set of numbers 1, 2, 3, 4 and 5, the elements are precisely 1, 2, 3, 4 and 5.

For example, we may use the letter S to denote the set of numbers 1, 2, 3, 4 and 5.

We say that x is an element of S if x = 1, 2, 3, 4, or 5.

We denote this membership by using the symbol “∈”.

Thus 2 ∈ S and 4 ∈ S.

The symbol “/∈” means “is not an element of”, or equivalently, “does not
belong to”.

Thus 6 /∈ S.
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1.2 Three methods to specify the elements of a given set

1. Listing Method: In this method, we simply write down all the elements
explicitly and enclose them by braces. Take for example,

A = {2, 4, 6, 8, 10}, and B = {Alan,Anita,Leon,Gigi, Jacky, Simon}.

Question: What is this set {3, 5, 7, . . . , }? Is it well defined?

2. Statement Method: In this method, the elements are specified by a descrip-
tive sentence. For example A is the set of all even numbers between 0 and 10,
or C is the set of all my students.

3. Rule Method: In this method, we specify the properties that the objects in
the set must satisfy. For instance,

A = {x : x is even and 2 ≤ x ≤ 10} = {x | x is even and 2 ≤ x ≤ 10}

where the symbol “:” (Or equivalently “|”) means “such that”. Here the
letter x is irrelevant and one may use some other symbols. The last equation
above is read as “A is a set containing all x such that x is even and is between
2 and 10”.
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1.3 Equality of sets

Definition 3. Two sets are said to be equal if they have the same elements.

We remark that we say “the same elements” and not “the same number
of elements”.

Thus if
A = {2, 4, 6, 8, 10},

B = {x : 0 < x ≤ 10 and x is even}
and

C = {2, 4, 6, 8, 11}
then we have

A = B

but
A ̸= C.

We have
{2, 2, 3, 3} = {2, 3} = {3, 2}.
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1.4 The Cardinality of a Set

Definition 4. Given a set A, the number of elements in the set is called the
cardinality of A and is denoted by |A|.
If a set has finite number of elements, then it is called a finite set, otherwise it is
called an infinite set.

Example 1.
|{2, 2, 3, 3}| = |{2, 3}| = |{3, 2}| = 2.

On the other hand, the setsN, Z, Q, I, R and C are all infinite sets of numbers.

1. N = N = {1, 2, 3, . . . , }.
2. Z = Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
3. Q = Q = {pq : p ∈ Z, q ∈ Z, q ̸= 0}.

4. R = R = {x : x is a real number}.
5. I = I = {x : x ∈ R but x /∈ Q}.
6. C = C = {x + yi : x ∈ R, y ∈ R, i2 = −1}.
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1.5 The Empty Set

Definition 5. The empty set is the set containing no elements, i.e., the
cardinality of the set is 0.

Examples of the empty set are the followings

D = {x : x ∈ R and x > 10 and x < 0}

and
E = {x : x is a man with four legs and eight arms}.

The empty set is usually denoted by

ϕ or {}.

Thus we may write ϕ = D = E.

Remark 1. However, we note that the set {ϕ} is NOT an empty set, but a set
with the only ONE element, namely the empty set.

Exercise 1.What is this set {{ϕ}}?
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1.6 The Universal Set

Definition 6. The universal set denoted by U is the set that contains all the
objects under consideration.

The words “under consideration” are put here to avoid the famous Russell’s
paradox which states that there is no set that can contain every object.

There is a well-known paradox of the atheistic Russell:

“no gods can be omnipotent, as he cannot create a stone that he cannot bear”.
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1.7 The Concept of Subsets

Definition 7. A set A is a subset of a set B if all elements of A are also
elements of B. In this case we write A⊆B.

If A ⊆ B, but A ̸= B, then we say A a proper subset of the set B and we
denote the relation by A⊂B. Thus we also have {1, 2} ⊂ {1, 2, 3}.

Remark 2. Sometimes people use A(B to represent A is a proper subset of B
and A⊂B to represent A is a subset of B. Here we adopt the former definitions.

• The set of all women in Hong Kong is a proper subset of the set of all people in
Hong Kong and

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

For any set A, we obviously have A ⊆ A, ϕ ⊆ A and A ⊆ U .

However, unlike numbers, not all the sets can be compared in size.

Example 2. {1, 2} ̸⊆ {2, 3} and {2, 3} ̸⊆ {1, 2}.
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1.8 The Venn Diagram

In a Venn diagram, sets are represented by any enclosed regions such as circles,
ovals or rectangles.

Elements in a set are represented by dots in the corresponding enclosed region.

Thus a ∈ A is represented as follows in Figure 1.1.

Since all sets are subsets of a universal set, we usually enclose all circles by a large
rectangle representing the universal set U .

��
��

Aa•

Figure 1.1.

15



Subsets of a given set are represented by inner circles.

Figure 1.2 shows that a ∈ A ⊆ B and b ∈ B but b /∈ A.

����
&%
'$

Aa

B

b ••

Figure 1.2.

If two sets have common elements, but are not equal, then we draw them as two
overlapping circles with the common elements listed in the overlapping area.

&%
'$

&%
'$

BA

Figure 1.3.
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For example, if
A = {1, 2, 3} and B = {2, 4, 6}.

Here A and B have a common element 2.

Then we have the representation in Figure 1.4.

&%
'$

&%
'$

BA 1
3

4
62

Figure 1.4.

Exercise 2.What’s wrong with the figure?
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1.9 Set Operations

The union of two given sets A and B, denoted by A∪B is the set of all elements
that are either in set A or in set B, i.e.,

A ∪B = {x : x ∈ A or x ∈ B} = B ∪ A.

Example 3. If
A = {1, 2, 3, 4} and B = {2, 4, 6, 8},

then
A ∪B = {1, 2, 3, 4, 6, 8}.

In fact, the set of all real numbers is just the union of the sets of rational
and irrational numbers, i.e.,

R = Q ∪ I.

In particular, a real number is either a rational number or an irrational number.
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From the definition, one can see that given any set A, we have

A ∪ U = U and A ∪ ϕ = A.

The union of two sets can be depicted by using the Venn diagrams.

We just shade the interior of the circles representing A and B respectively.

Then the resulting shaded region is the union of the sets A and B.
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Figure 1.5.
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1.9.1 Intersection

The intersection of two given sets A and B, denoted by A ∩ B is the set of all
elements that are common to both sets, i.e.

A ∩B = {x : x ∈ A and x ∈ B} = B ∩ A.

Example 4. If
A = {1, 2, 3, 4} and B = {2, 4, 6, 8}

then A ∩B = {2, 4}. Furthermore, if we let C = {1, 3, 5, 7}, then B ∩ C = ϕ.

Two sets A and B are said to be disjoint if A∩B = ϕ, i.e., the two sets have no
element in common.

The set of all rational numbers and set of all irrational numbers are disjoint as no
number can be both rational and irrational. In set notations, we have Q ∩ I = ϕ.

Remark 3. For any set A, we clearly have A ∩ ϕ = ϕ and A ∩ U = A.
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The intersection of two sets can also be described by using Venn diagrams.

We shade the interior of the circles representing A and B by two different shading.

Then the region shaded with both kinds of shading will be the intersection of A
and B.
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Figure 1.6.

Exercise 3. Use Venn Diagram to demonstrate that for any three non-empty
sets A,B,C, we have

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

and
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

We remark that Venn Diagram can only serve as a demonstration but not a proof.
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1.9.2 Complement

Given a set A, the complement of A, denoted by Ā or A′, is the set of all elements
that are in the universal set U but not in A, i.e.

Ā = A′ = {x : x ∈ U and x /∈ A}.

If U = R, then Q̄ = I, as any real numbers that are not rational must be irrational.

The complement of a set A can also be described by using Venn diagrams as follows:
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Figure 1.7.
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1.9.3 Relative complement

Now we are ready to define subtraction of sets. The relative complement of A
in B, denoted by B − A, (Or equivalently B\A) is defined as

B − A = B ∩ Ā = {x : x ∈ B and x /∈ A}.

Example 5. If
A = {1, 2, 3, 4} and B = {2, 4, 6, 8},

then
A−B = {1, 3} and B − A = {6, 8}.
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Figure 1.8.

Exercise 4.What is the relation between A and B if B − A = ϕ?
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2 A Quick Review on Differentiation and Integration*

This section provides a quick review on the results of differentiation and integration
of a single variable function f (x).

2.1 Differentiation of a Function

The geometric meaning of the derivative of a function f (x), at a point x0 denoted
by

f ′(x0) or
df (x)

dx

∣∣∣∣
x=x0

.

at a point x0 is the slope of the tangent line that passing through the point
(x0, f (x0)).

Since the derivative of f (x) at x = x0 is the instantaneous rate of change of f at
x0, we see that if the derivative is positive (negative), that means f (x) is increasing
(decreasing) when x is increased by a small amount at the point x0.
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2.2 Some Rules for Differentiation

In the following, we present some useful rules without proof. These rules can sim-
plify the calculations of derivatives.

(i)
dc

dx
= 0 for any constant c.

(ii)
dxn

dx
= nxn−1.

(iii)
dex

dx
= ex.

(iv)
d loge x

dx
=

1

x
.

(v)
d sinx

dx
= cos x.

(vi)
d cosx

dx
= − sinx.

(vi)
d(af (x) + bg(x))

dx
= a · (df(x)

dx
) + b · (dg(x)

dx
).
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2.3 Some Advanced Rules for Differentiation

(i) Product Rule:

d[u(x) · v(x)]
dx

=
du(x)

dx
· v(x) + u(x)

dv(x)

dx
.

In the “prime” notation, we have

(u(x)v(x))′ = u(x)′v(x) + u(x)v(x)′.

(ii) Quotient Rule:[
u(x)

v(x)

]′
=

d
[
u(x)
v(x)

]
dx

=
u(x)′v(x)− u(x)v(x)′

v(x)2
.

(iii) Chain Rule: Suppose that u = f (y) where y = y(x), i.e. u(x) = f (y(x)).
Then

du(x)

dx
=

df (y(x))

dx
=

df

dy
· dy
dx

.
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Example 6. (a) By product rule, we have

d

u︷︸︸︷
ex

v︷︸︸︷
x2013

dx
=

d

u︷︸︸︷
ex

dx
·

v︷︸︸︷
x2013+

u︷︸︸︷
ex

d

v︷︸︸︷
x2013

dx
= x2012ex(x + 2013).

(b) By quotient rule, we have

d

dx


u︷︸︸︷
ex

x2︸︷︷︸
v

 =

u′︷︸︸︷
(ex)′

v︷︸︸︷
x2 −

u︷︸︸︷
ex

v′︷︸︸︷
(x2)′

(x2)2︸︷︷︸
v2

=
exx2 − ex2x

x4
= ex

(
x− 2

x3

)
.

(c) Using the chain rule with u = ex
2013

= ey(x) where y(x) = x2013, we have

dex
2013

dx
=

dex
2013

dy
· dy
dx

=
dey

dy
· dy
dx

= ey · 2013 · x2012 = 2013x2012ex
2013

.

Or simply,

dex
2013

dx
=

dex
2013

dx2013
· dx

2013

dx
= ex

2013 · (2013x2012) = 2013x2012ex
2013

.
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2.4 Definite Integrals

Let y = f (x) and a < b be two given real numbers such that

f (x) ≥ 0 for a ≤ x ≤ b.

The definite integral of y = f (x) between the points a and b is defined as the
area of the region bounded by the curve

y = f (x)

and the lines
x = a, x = b and y = 0

and is denoted by ∫ b

a

f (x)dx.

Here if f (x) < 0 then the area is negative.
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2.5 Some Rules of Definite Integral

(i) For any real constant c, ∫ b

a

c f (x)dx = c

∫ b

a

f (x)dx.

(ii)

∫ b

a

(f (x)± g(x))dx =

∫ b

a

f (x)dx±
∫ b

a

g(x)dx.

(iii) For a ≤ b ≤ c, ∫ c

a

f (x)dx =

∫ b

a

f (x)dx +

∫ c

b

f (x)dx.

(iv)

∫ a

a

f (x)dx = 0.

(v)

∫ b

a

f (x)dx = −
∫ a

b

f (x)dx.
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• How to find ∫ b

a

f (x)dx?

This can be answered by the following proposition.

Theorem 1. For any differentiable function g(x), we have∫ b

a

g′(x)dx = g(b)− g(a) ≡ g(x)

∣∣∣∣b
a

.

Thus if you are given f (x), then you need to find a function g(x) such that

g′(x) = f (x).

This can be regarded as an “anti-derivative problem”.
Remark: Here we define∫ ∞

a

f (x)dx = lim
t→∞

∫ t

a

f (x)dx

and similarly ∫ b

−∞
f (x)dx = lim

t→−∞

∫ b

t

f (x)dx.
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Theorem 2. For any continuous function f ,

d

dx

∫ x

a

f (t)dt = f (x).

From the previous theorem, one can see that if

g(x) =

∫ x

a

f (t)dt then
dg(x)

dx
= f (x).

Thus f (x) is the derivative of g(x). And we say that g(x) is an anti-derivative
of f (x) if g′(x) = f (x).

We note that if g(x) is an anti-derivative of f (x), then for any real number c,
g(x)+ c is also an anti-derivative of f . Given f (x), the anti-derivatives of f (x) are
denoted by ∫

f (x)dx

and it is sometimes called the indefinite integral of f (x). Here are some exam-
ples of indefinite integrals.
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Example 7. (a) ∫
x2dx =

x3

3
+ c

because
d

dx

(
x3

3
+ c

)
= x2 + 0 = x2.

(b) ∫
exdx = ex + c

because
d

dx
(ex + c) = ex + 0 = ex.

(c) ∫
1

x
dx = loge(x) + c.

because
d

dx
(loge(x) + c) =

1

x
+ 0 =

1

x
.
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We note that if ∫
f (x)dx = g(x) + c

then ∫ b

a

f (x)dx = g(x)

∣∣∣∣b
a

= g(b)− g(a).

The following is an example.

Example 8. The Exponential Function:

F (t) =

∫ t

0

e−xdx = −e−x

∣∣∣∣t
0

= −e−t + e0 = 1− e−t.

Example 9. The Uniform Function:

U(x) =

{
1 if x ∈ [0, 1]
0 if otherwise.

F (t) =

∫ t

0

U(x)dx = t for t ∈ [0, 1].
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Example 10. Compute ∫ ∞

−∞
e−|x|dx.

We note that

e−|x| =

{
e−x if x ≥ 0
ex if x < 0.

Therefore we have ∫ ∞

−∞
e−|x|dx =

∫ 0

−∞
exdx +

∫ ∞

0

e−xdx.

We also note that ∫ ∞

0

e−xdx =

∫ 0

−∞
exdx

and therefore ∫ ∞

−∞
e−|x|dx = 2

∫ ∞

0

e−xdx = −2e−x

∣∣∣∣∞
0

= 2 · 1 = 2.

Question: Compute ∫ ∞

−∞
xe−|x|dx.
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Example 11.We have

1 + x + x2 + · · ·+ =
1

1− x
for |x| < 1.

So for |t| < 1

t +
t2

2
+
t3

3
+ · · ·+ =

∫ t

0

1 + x + x2 + · · · + dx =

∫ t

0

1

1− x
dx = − loge(1− t).

We have

loge(1− t) = −t− t2

2
− t3

3
− · · · − for |t| < 1

and therefore
loge(1− t) ≈ −t

for very small t. This is a very useful approximation for loge(1− t) when t is very
small.
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2.6 Integration by Substitution

In this section, we introduce the method of integration by substitution.

Basically the method is very simple and can be described as follows. Suppose that

x = g(u)

is a function of u, then ∫
f (x)dx =

∫
f (g(u))d(g(u))

=

∫
f (g(u))

dg(u)

du
du

=

∫
f (g(u))g′(u)du.
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Example 12. The integral ∫
(x + 1)3dx

can be computed as∫
(x + 1)3dx =

∫
(x3 + 3x2 + 3x + 1)dx =

x4

4
+ x3 +

3

2
x2 + x + c1.

Using the substitution
u = x + 1 or x = u− 1

then
du

dx
= 1,

and we have ∫
(x + 1)3dx =

∫
u3du =

u4

4
+ c2 =

(x + 1)4

4
+ c2.

We remark that the constant c1 can be different from the constant c2.
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2.7 Integration by Parts

In this section, we are going to introduce another very useful integration technique,
integration by parts. Recall that the product rule of differentiation gives

d(f (x)g(x))

dx
= f ′(x)g(x) + g′(x)f (x). (2.1)

Hence if we integrate both sides of (2.1), we get

f (x)g(x) =

∫
f ′(x)g(x)dx +

∫
g′(x)f (x)dx, (2.2)

or equivalently, ∫
f (x)g′(x)dx = f (x)g(x)−

∫
f ′(x)g(x)dx. (2.3)

This is called the integration by parts formula. Very often, the formula is
written as ∫

f (x)dg(x) = f (x)g(x)−
∫

g(x)df (x) (2.4)

or simply ∫
fdg = fg −

∫
gdf. (2.5)
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We remark for definite integral, from (2.3), we have∫ b

a

f (x)g′(x)dx = f (x)g(x)

∣∣∣∣b
a

−
∫ b

a

f ′(x)g(x)dx. (2.6)

Let us see how this formula can help us in the calculation of integrals.

Example 13. Let us compute ∫ 1

0

xexdx

by integration by parts. We let

f (x) = x and g(x) = ex

then
f ′(x) = 1 and g′(x) = ex.

Thus the indefinite integral can be computed as follows:∫
x︸︷︷︸
f

ex︸︷︷︸
g′

dx =

∫
x︸︷︷︸
f

d ex︸︷︷︸
g

= x︸︷︷︸
f

ex︸︷︷︸
g

−
∫

ex︸︷︷︸
g

d x︸︷︷︸
f

= xex − ex + c.

Hence we have ∫ 1

0

xexdx = xex − ex
∣∣∣∣1
0

= 1.
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2.8 Taylor’s Series

• Taylor’s series: for any x ∈ R, we have the followings: 1

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·+

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+

sin(x) =
x

1!
− x3

3!
+
x5

5!
+ · · · + .

• In the next part, we shall introduce a special number i such that i2 = −1. The
above series can be linked up by

eix = cos(x) + i · sin(x).
Check the following:

eix = 1 +
xi

1!
+
x2i2

2!
+

x3i3

3!
+

x4i4

4!
+
x5i5

5!
+ · · ·+

= 1+
xi

1!
− x2

2!
−x3i

3!
+
x4

4!
+
x5i

5!
+ · · ·+

1Here n! = 1× 2× 3× · · · × n for n ∈ N and 0! is defined to be equal to 1.
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