
3 Complex Variables

The imaginary number 1 i is a solution of the equation:

x2 + 1 = 0.

• This idea of i was introduced to answer the above question. But then it results
in many interesting results, beautiful theory and useful applications.

• In general a complex number a+ bi, where a and b are both real numbers and
i2 = −1. We use C to denote the set of complex number:

C = {a + bi : a, b ∈ R, i2 = −1}.

It is clear that the set of all real numbers R is a proper subset of C.
Example 1.We note that

1 + i, 1− i,−1 and i

are complex numbers.

1The earliest reference to the square root of a negative number perhaps is the work of a Greek mathematician, Heron of Alexandria, in the 1st century
AD. The impetus to study complex numbers proper first arose in the 16th century when algebraic solutions for the roots of cubic and quartic polynomials
(Taken from Wikipedia).
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3.1 The Complex Plane

• The four complex numbers can be represent in the following complex plane. It is
similar to the case of R2 except the x-axis represents the real part of the complex
number and the y-axis represents the imaginary part of the complex number.
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3.2 The Argand Diagram

3.2.1 Conjugate

Given a complex number z = a + bi, the real part Re(z) = a, the imaginary part
Im(z) = b and the conjugate of z, denoted by z is given by a− bi.

3.2.2 Modulus

Given a complex number z = a + bi, the modulus of z, denoted by |z| is given by√
a2 + b2.
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3.3 Addition of Two Complex Numbers

• Let z1 = a + bi and z2 = c + di where a, b, c, d are real. We first note that if

z1 = a + bi = z2 = c + di

then we have
(a− c) + (b− d)i = 0

and therefore we must have a = c and b = d.

• For addition, we define

z1 + z2 = (a + bi) + (c + di) = (a + c) + (b + d)i.

It is very similar to the addition of two vectors in R2:

(a, b) + (c, d) = (a + c, b + d).

Example 2.We have

(2 + i) + (3− 2i) = (2 + 3) + (1− 2)i = 5− i.

Similarly in R2, we can write

(2, 1) + (3,−2) = (5,−1).
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Theorem 1. For any two complex numbers z1 and z2, we have

|z1 + z2| ≤ |z1| + |z2|.
Proof. Let z1 = a + bi and z2 = c + di, where a, b, c, d are real numbers, then we
are to show that

|z1 + z2| =
√
(a + c)2 + (b + d)2 ≤

√
a2 + b2 +

√
c2 + d2 = |z1| + |z2|.

The above is true if
ac + bd ≤

√
a2 + b2

√
c2 + d2.

Now we have
(ac + bd)2 ≤ (a2 + b2)(c2 + d2)

because
2abcd ≤ (ad)2 + (bc)2 as 0 ≤ (ad− bc)2.

Remark 1. The result can be generalized as follows:

|z1 + · · · + zn| ≤ |z1| + · · · + |zn|.
Note that we can apply the following argument:

|z1 + · · · + zn| = |(z1 + · · · + zn−1) + zn| ≤ |z1 + · · · + zn−1| + |zn|.
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3.4 Multiplication of Two Complex Numbers

We can define the product of two complex numbers as follows.

Theorem 2. Let z1 = a + bi and z2 = c + di, then we have

z1 · z2 = (ac− bd) + (ad + bc)i.

Proof. We have
z1 · z2 = (a + bi) · (c + di)

= ac + adi + bci + bdi2

= (ac− bd) + (ad + bc)i.

Example 3.We have

(2 + i) · (3− 2i) = 6 + 3i− 4i− 2i2 = 8− i.

Remark 2. For any two complex numbers z1 and z2,

z1 + z2, z1 − z2, z1 · z2 and z1/z2 (z2 ̸= 0)

are also complex numbers.
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Theorem 3.We have |z|2 = z · z.
Proof. Let z = a + bi where a, b ∈ R, then we have

|z|2 = a2 + b2

by definition. We also have

z · z = (a + bi)(a− bi) = a2 − b2i2 = a2 + b2.

Hence the result follows.

• The above theorem can be applied to the following problem. Suppose that
1 + 2i

1− i
= a + bi

for some real numbers a and b. What are a and b? We know 1− i = 1 + i and
(1− i) · (1 + i) = 2, it follows that

Example 4.We have
1 + 2i

1− i
=

1 + 2i

1− i
× 1 + i

1 + i︸ ︷︷ ︸
=1

=
1 + 2i + i− 2

1 + 1
= −1

2
+
3

2
i ≡ a + bi.

7



3.5 Polar Form

A complex number can be written in its polar form as follows:

z = a + bi = r cos(θ) + ri sin(θ).

Here Arg(z) = θ where θ ∈ [−π, π],

r =
√
a2 + b2 = |z|, sin(θ) =

b√
a2 + b2

and cos(θ) =
a√

a2 + b2
.
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Example 5. Given the complex number

z = 1 + i,

we can compute
|z| =

√
zz =

√
(1 + i)(1− i) =

√
2.

Then we can also compute the angle θ, where

tan(θ) =
1

1
= 1

thus θ is π/4.

Hence the polar form of

z =
√
2(cos(π/4) + i sin(π/4)).
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Example 6. Given the complex number

z = 1−
√
3i,

we can compute

|z| =
√
zz =

√
(1−

√
3i)(1 +

√
3i) = 2.

Then we can also compute the angle θ, where

tan(θ) =
−
√
3

1
= −

√
3

thus θ is −π/3.

Hence the polar form of

z = 2(cos(π/3) + i sin(−π/3)) = 2(cos(π/3)− i sin(π/3)).
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Theorem 4.We have

Arg(z1 · z2) = Arg(z1) + Arg(z2)

and

Arg

(
z1
z2

)
= Arg(z1)− Arg(z2).

Proof. Let
z1 = r1(cos(θ1) + i sin(θ1))

and
z2 = r2(cos(θ2) + i sin(θ2)).

Then we have

z1z2 = r1r2 ((cos(θ1) cos(θ2)− sin(θ1) sin(θ2))
+(cos(θ1) sin(θ2) + sin(θ1) cos(θ2))i)

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)).

Because we have the following two identities:

sin(A +B) = sin(A) cos(B) + sin(B) cos(A)

cos(A +B) = cos(A) cos(B)− sin(A) sin(B).
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And

z1
z2

=
r1
r2

(cos(θ1) + i sin(θ1))(cos(θ2)− i sin(θ2))

(cos(θ2) + i sin(θ2))(cos(θ2)− i sin(θ2))

=
r1
r2

((cos(θ1) cos(θ2) + sin(θ1) sin(θ2)) + (− cos(θ1) sin(θ2) + sin(θ1) cos(θ2))i)

1
= r1

r2
(cos(θ1 − θ2) + i sin(θ1 − θ2)).

Because we have the following two identities:

sin(A−B) = sin(A) cos(B)− sin(B) cos(A)

cos(A−B) = cos(A) cos(B) + sin(A) sin(B).

Example 7. Let z1 = i and z2 = −i. We have Arg(i) = π
2 and Arg(z2) = −π

2 .
Therefore we have

0 = Arg(1) = Arg(z1z2) = Arg(z1) + Arg(z2) =
π

2
− π

2
= 0

and

π = Arg(−1) = Arg

(
z1
z2

)
= Arg(z1)− Arg(z2) =

π

2
+
π

2
= π.

12



3.6 Some Geometry of Complex Numbers

If |z|2 = 1 and z is real then we know that z = 1 or z = −1. But if z is a complex
number, then the answer is much more interesting.

• We write
z = x + yi

so if |z| = 1 then we have

|z| =
√
x2 + y2 = 1

or
x2 + y2 = 1.

Thus if |z| = 1 then z can be any complex number on the unit circle centered
at 0 + 0i of the complex plane.

• In other words, the following set

{z : |z| = 1, z ∈ C}
contains all the complex numbers on the unit circle centered at 0+0i of the complex
plane.

13



Example 8.What are the complex numbers z satisfying |z − 1| = 4?

We let z = x + yi where x and y are real numbers. Then we have

(x− 1)2 + y2 = 42 = 16

which is a circle of radius 4 and centered at 1 + 0i of the complex plane.

Example 9. Suppose we have

Re(z2) = 0

then the answer will be different and we have

Re(x2 − y2 + 2xyi) = 0

i.e.,
x2 − y2 = (x− y)(x + y) = 0.

Then z can be any point on the lines:

y = x or y = −x.
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3.7 Parametric Representation

• Given the straight line: y = 2x+ 1 in R2. Then for each point (x, y) on the line,
there is a t ∈ R (t is a parameter), such that x = t and y = 2t + 1. Therefore the
straight line can be represented in a parametric form as follows:

{(t, 2t + 1) : t ∈ R}.
If the straight line is in the complex plane, then the corresponding set of complex
numbers can be written as

{t + (2t + 1)i : t ∈ R}.
• Similarly, the points on a unit circle centered at (0, 0) in R2 can be written as

{(cos(t), sin(t)) : t ∈ [0, 2π)}.
If the unit circle is in the complex plane, then the corresponding set of complex
numbers can be written as

{cos(t) + i sin(t) : t ∈ [0, 2π)}.
• Hence in the previous example, we can use the parametric form to represent
the two lines:

{t + ti : t ∈ R} ∪ {t− ti : t ∈ R}.
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3.8 De Moivre’s Theorem

Theorem 5. Let n be a non-negative integer and r ̸= 0, we have

(r cos(θ) + ri sin(θ))n = rn (cos(nθ) + i sin(nθ)) .

Proof. We can show this by mathematical induction. When n = 0, we have

(r cos(θ) + ri sin(θ))0 = 1 = r0 (cos(0) + i sin(0)) .

Thus the equality is true when n = 0. Assume that

(r cos(θ) + ri sin(θ))n = rn (cos(nθ) + i sin(nθ)) . (3.1)

Then we shall show

(r cos(θ) + ri sin(θ))n+1 = rn+1 (cos((n + 1)θ) + i sin((n + 1)θ)) .

Now

(r cos(θ) + ri sin(θ))n+1 = (r cos(θ) + ri sin(θ)) rn (cos(θ) + i sin(θ))n

= (r cos(θ) + ri sin(θ)) rn (cos(nθ) + i sin(nθ)) (by Eq. (3.1))
= rn+1(cos(θ) cos(nθ)− sin(θ) sin(nθ))

+rn+1(cos(θ) sin(nθ) + cos(nθ) sin(θ))i
= rn+1(cos((n + 1)θ) + i sin((n + 1)θ)).
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3.8.1 Principle of Mathematical Induction

The Principle of Mathematical Induction (M.I.) can be informally stated as
follows:

We can establish the truth of a proposition if

(a) we can show that it follows from smaller instances of the same proposition, as
well as

(b) we can establish the truth of the smallest instance (or instances) explicitly.

Theorem 6. Let S1, S2, S3, . . . be statements such that
(1) S1 is true;
(2) Whenever Statement Sk is true, where k ∈ N, the Statement Sk+1 is true

Then all of the statements S1, S2, . . . , are true.
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Corollary 1. Let n be a positive integer and r ̸= 0, we have

(r cos(θ) + ri sin(θ))−n = r−n (cos(nθ)−i sin(nθ)) .

Proof. We have to show that

r−n (cos(nθ)− i sin(nθ)) · (r cos(θ) + ri sin(θ))n = 1.

But we know that

(r cos(θ) + ri sin(θ))n = rn (cos(nθ) + i sin(nθ))

and therefore we have

r−n (cos(nθ)− i sin(nθ)) · rn (cos(nθ) + i sin(nθ)) = cos2(nθ) + sin2(nθ) = 1.

This is because we have the identity

cos2(A) + sin2(A) = 1.

The proof is then completed.
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Corollary 2. Let n be a positive integer and r ̸= 0, we have

(r cos(θ) + ri sin(θ))
1
n = r

1
n

(
cos(

θ

n
) + i sin(

θ

n
)

)
.

Proof. (
r
1
n
(
cos(θn) + i sin(θn)

))n
= r

(
cos(n · θ

n) + i sin(n · θ
n)
)

= r (cos(θ) + i sin(θ)) .

Hence the result follows.

Corollary 3. Let

n =
p

q

be a rational number (p, q are integers and q ̸= 0) and r ̸= 0, we have

(r cos(θ) + ri sin(θ))
p
q = r

p
q

(
cos(

pθ

q
) + i sin(

pθ

q
)

)
.
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Proof. We note that(
r
p
q

(
cos(

pθ

q
) + i sin(

pθ

q
)

))q
p

= r

(
cos(

pθ

q
) + i sin(

pθ

q
)

)q
p

and (
cos(

pθ

q
) + i sin(

pθ

q
)

)q
p

=

((
cos(

pθ

q
) + i sin(

pθ

q
)

)1
p

)q

.

Since (
cos(

pθ

q
) + i sin(

pθ

q
)

)1
p

=

(
cos(

θ

q
) + i sin(

θ

q
)

)
and (

cos(
θ

q
) + i sin(

θ

q
)

)q

= (cos(θ) + i sin(θ)) .

The result follows.

Remark: It seems that for f (θ) = cos θ + i sin θ, we have for any “real number”
r,

f (θ)r = f (rθ).

What can be f (θ)?
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3.9 Trigonometric Identities

In fact, we have

eθi = cos(θ) + i sin(θ).

We can recognize that the Taylor’s series for any x ∈ R

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·+

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+

sin(x) =
x

1!
− x3

3!
+
x5

5!
+ · · · + .

Thus by “letting x = θi”

eθi = 1 + θi
1! −

θ2

2! −
(θi)3

3! + θ4

4! + · · ·+
= 1− θ2

2! +
θ4

4! −
θ6

6! + · · ·+
+i( θ1! −

θ3

3! +
θ5

5! + · · ·+)
= cos(θ) + i sin(θ).
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Corollary 4.

cos(x) =
exi + e−xi

2
and sin(x) =

exi − e−xi

2i
Theorem 7. Show that

cos(2x) = cos2(x)− sin2(x) and sin(2x) = 2 sin(x) cos(x).

Proof.
(cos(x) + i sin(x))2 = cos2(x)− sin2(x) + 2 cos(x) sin(x)i.

But by De Moivre’s theorem we have

(cos(x) + i sin(x))2 = cos(2x) + i sin(2x).

By comparing coefficients, we have

cos(2x) = cos2(x)− sin2(x) and sin(2x) = 2 sin(x) cos(x).

Corollary 5. Let x = π/12 then√
3

2
= cos(π/6) = cos2(π/12)− sin2(π/12) = 2 cos2(π/12)− 1.

Thus we have cos(π/12) =
√

1
2(1 +

√
3
2 ).
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Theorem 8. Show that

cos(3x) = 4 cos3(x)− 3 cos(x) and sin(3x) = 3 sin(x)− 4 sin3(x).

Proof.

(cos(x) + i sin(x))3 = cos3(x)− 3 sin2(x) cos(x) + (3 cos2(x) sin(x)− sin3(x))i.

But by De Moivre’s theorem we have

(cos(x) + i sin(x))3 = cos(3x) + i sin(3x).

By comparing coefficients, we have

cos(3x) = cos3(x)− 3 sin2(x) cos(x)

and
sin(3x) = 3 sin(x) cos2(x)− sin3(x).

Using the identity
sin2(x) + cos2(x) = 1

the result follows.
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3.10 The nth Root of Unity

For a positive integer n, the following equation has n roots:

zn = 1

they are called the nth roots of unity. A complex number can be represented
as

r cos(x) + ir sin(x) = rexi

where in this case r = 1. Thus we can rewrite the equation as follows:

zn = 1 = e2πki.

Hence we have the roots given by

z = e
2kπi
n = cos

(
2kπ

n

)
+ i sin

(
2kπ

n

)
for k = 0,±1,±2, . . . , .

If we let w = e
2πi
n , then it is straightforward to check that

1, w, w2, . . . , wn−1

are the n district roots. We call w an nth root of unity (|w| = 1 and wn = 1).
In fact, 1, w, w2, . . . , wn−1 are n distinct nth roots of unity.
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Example 10. Consider the equation:

z4 = 1

then we have 1, w, w2, w3 being the four distinct roots of unity where

w = e
2πi
4 .

However, if we take w1 = w2 then we have

w2
1 = w4 = 1, w3

1 = w6 = w4 · w2 = w2, w4
1 = 1, w5

1 = w10 = w2, w6
1 = w12 = 1, · · · , .

Thus the powers of w1 cannot generate all the four distinct roots.

But if we take w2 = w3 then we have

w2
2 = w6 = w2, , w3

2 = w9 = w, w4
2 = w12 = 1, w5

2 = w15 = w3.

In this case, we can generate all the four distinct roots of the equation

z4 = 1

by using the powers of w2.
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Example 11. Let w be a complex number such that w3 = 1 and w ̸= 1.

How to simplify
w2013 + w101 + w64?

Since w3 = 1, we have

w2013 + w101 + w64 = w671×3 + w3×33+2 + w3×21+1 = 1 + w2 + w.

Furthermore, we note that

0 = w3 − 1 = (w − 1)(w2 + w + 1).

Since w ̸= 1, we must have w2 + w + 1 = 0. Hence we have

w2013 + w101 + w64 = 0.
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3.11 Some Complex Functions

In this section, we consider the image of a complex function.

3.11.1 Linear Function

Consider the following linear function f : D → C:

f (z) = cz + d where c, d ∈ R, c ̸= 0 and D ⊂ C.

The image of D under the function f is the set of complex numbers

f (D) = {z′ : z′ = f (z) for z ∈ D}.

(i) Suppose that
D = {x + yi : ax + by = e}

is a straight line. For z′ = x′ + y′i ∈ f (D), we write

z′ = x′ + y′i = f (z) = c(x + yi) + d = cx + d + cyi

for some z = x + yi ∈ D.
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To obtain the relationship of x′ and y′, we proceed as follows. We first have

x =
1

c
(x′ − d) and y =

1

c
y′.

We then have

ax + by =
a

c
(x′ − d) +

b

c
y′ = e.

Finally the relation between x′ and y′ is given by

ax′ + by′ = ad + ce.

which is another straight line.

That is to say, the image f (D) is again a straight line.
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Example 12. Suppose
f (z) = z + 1

and
D = {x + yi : x− y = 1}.

To find

f (D) = {z′ = x′ + y′i : z′ = x′ + y′i = f (z) for some z = x + yi ∈ D}.

Now we have for z′ ∈ f (D),

z′ = x′ + y′i = f (z) = z + 1 = x + yi + 1 = (x + 1) + yi

for some z ∈ D.

To obtain the relation between x′ and y′, we have

x′ = x + 1 and y′ = y.

Since z = x + yi ∈ D, we have x − y = 1. Then we obtain the relationship
between x′ and y′ as follows:

1 = x− y = x′ − 1− y′ or x′ − y′ = 2.
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(ii) If
D = {x + yi : x2 + y2 = 1}

is the unit circle with center at zero then for z′ = x′ + y′i ∈ f (D), we have

z′ = x′ + y′i = f (z) = cz + d = c(x + yi) + d.

for some z = x + yi ∈ D. Now we have

x =
1

c
(x′ − d) and y =

1

c
y′.

Since z = x + yi ∈ D,

1 = x2 + y2 =
1

c2
(x′ − d)2 +

1

c2
y′2.

Hence the relationship between x′ and y′ is given by

(x′ − d)2 + y′2 = c2

is another circle with center d and radius of |c|.2

Thus we see that the above linear function maps a straight line to a straight
line and a circle to a circle.

2You may also use the parametric form of an unit circle: x = cos θ, y = sin θ for θ ∈ [−π, π]. Then we have f(z) = x′ + y′i = c(cos θ + i sin θ) + d =
c cos θ + d+ ci sin θ. Hence we have x′ = c cos θ + d and y′ = c sin θ. Finally we have (x′ − d)2 + y′2 = c2(cos2 θ + sin2 θ) = c2 which is circle.
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3.11.2 The Inverse Function

Consider the inverse function f : D → C:

f (z) =
1

z
.

(i) If D = {x + yi : cx + dy = e and e ̸= 0} is a straight line.

Then we have for z′ = x′ + y′i ∈ f (D),

z′ = x′ + y′i = f (z) =
1

z
=

1

x + yi
=

x− yi

x2 + y2
for some z = x + yi ∈ D.

To obtain the relationship of x′ and y′ one can proceed as follows. We first have

x′ =
x

x2 + y2
and y′ =

−y

x2 + y2
.

We then have
x′

y′
=

−x

y
and x′2 + y′2 =

1

x2 + y2
=

−y′

y
.

Now we have
cx + dy = e or

cx

y
+ d =

e

y
.
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Then we have

−c

(
x′

y′

)
+ d =

−e(x′2 + y′2)

y′

or
−cx′ + dy′ = −e(x′2 + y′2)

or
e(x′2 + y′2)− cx′ + dy′ = 0.

Now we have (
x′ − c

2e

)2
+

(
y′ +

d

2e

)2

=
c2 + d2

4e2
.

which is a circle with center c
2e −

d
2ei and radius

√
c2+d2

4e2
.
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(ii) If
D = {x + yi : x2 + y2 = r2}

is the circle with center at zero and radius r then for z′ = x′+ y′i ∈ f (D), we have

x′ + y′i = f (z) =
1

z
=

1

x + yi
=

x− yi

x2 + y2
=

x− yi

r2

for some z = x + yi ∈ D. Now

x = r2x′ and y = −r2y′

so we have

x′2 + y′2 =
1

r2

is a circle with radius 1
r and center 0 3. Thus if

D = {x + yi : x2 + y2 = r2 ≤ 1}

then

f (D) = {x + yi : x2 + y2 =
1

r2
≥ 1}.

3You may also use the parametric form of a circle: x = r cos θ, y = r sin θ for θ ∈ [−π, π]. Then we have f(z) = x′ + y′i = 1
r cos θ+ir sin θ = 1

r (cos θ− i sin θ).

Hence we have x′ = 1
r cos θ and y′ = −1

r sin θ. Finally we have x′2 + y′2 = 1
r2 .
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3.12 Hyperbolic Functions

We define a class of function called Hyperbolic functions. They are similar to
the trigonometric functions.

(i) Hyperbolic sine of x:

sinh(x) =
ex − e−x

2
(ii) Hyperbolic cosine of x:

cosh(x) =
ex + e−x

2
Using the above two definitions, one can define the rest of the hyperbolic functions.
For example the hyperbolic tangent and recall that

tan(x) =
sin(x)

cos(x)
.

(iii) Hyperbolic tangent of x:

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
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The remaining hyperbolic functions are just the inverse of the above (i)-(iii). Recall
that

cot(x) =
1

tan(x)
.

(iv) Hyperbolic cotangent of x:

coth(x) =
1

tanh(x)
=

ex + e−x

ex − e−x

(v) Hyperbolic secant of x:

sech(x) =
1

cosh(x)
=

2

ex + e−x

(vi) Hyperbolic cosecant of x:

csch(x) =
1

sinh(x)
=

2

ex − e−x
.
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Theorem 9.

sinh(−x) = − sinh(x) and cosh(−x) = cosh(x).

Proof.

sinh(−x) =
e−x − ex

2
= − sinh(x)

and

cosh(−x) =
e−x + ex

2
= cosh(x).

Corollary 6.
tanh(−x) = − tanh(x)

coth(−x) = − coth(x)

sech(−x) = sech(x)

csch(−x) = −csch(x)
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Theorem 10. (a)
dsinh(x)

dx
= cosh(x).

(b)
dcosh(x)

dx
= sinh(x).

(c)
d tanh(x)

dx
=

d

dx

(
sinh(x)

cosh(x)

)
=

cosh2(x)− sinh2(x)

cosh2(x)
=

1

cosh2(x)
.

because we have
cosh2(x)− sinh2(x) = 1.

37



Theorem 11. (a)∫
sinh(x)dx =

∫
ex − e−x

2
dx =

ex + e−x

2
+ C = cosh(x) + C.

(b) ∫
cosh(x)dx =

∫
ex + e−x

2
dx =

ex − e−x

2
+ C = sinh(x) + C.

(c) ∫
tanh(x)dx =

∫
sinh(x)

cosh(x)
dx =

∫
d cosh(x)

cosh(x)
= loge(cosh(x)) + C.
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3.13 Relation Between Hyperbolic Functions and Trigonometric Functions

Theorem 12.

i sinh(x) = sin(ix) and cosh(x) = cos(ix).

Proof. Recall that

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

and

e−x = 1− x

1!
+
x2

2!
− x3

3!
+
x4

4!
+ · · ·

and

sin(x) =
x

1!
− x3

3!
+
x5

5!
+ · · · + .

Thus

sinh(x) =
ex − e−x

2
=

x

1!
+
x3

3!
+
x5

5!
+

and

sin(ix) = i

(
x

1!
+
x3

3!
+
x5

5!
+ · · ·+

)
.

Then we have i sinh(x) = sin(ix). Similarly one can show the second equality.
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3.14 A Summary

1. Imaginary numbers.

2. The Argand diagram.

3. Arg and modulus and conjugate of a complex number.

4. Polar form.

5. De Moivre’s theorem and its applications.

6. eθi = cos(θ) + i sin(θ) and trigonometric identities.

7. The nth roots of unity.

8. The image of a complex function.

9. Hyperbolic functions and trigonometric functions.
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