
4 Permutations and Combinations

In this section, we introduce some symbols for counting combinations.

• The symbol n! represents the product of all integers from 1 to n. In other words,
it means that

n! = n (n− 1) (n− 2) (n− 3)× 3× 2× 1.

For simplicity of discussion , we define

0! = 1.

• It is easy to see that that given a set of n distinct objects, there are n! ways to
arrange them in an order of sequence.

Because there are n possible objects to be places at Position 1. After placing an
object in Position 1, there are n − 1 possible objects to be placed at Position 2.
After it has been placed, there are n − 2 objects to be placed at Position 3. The
argument can continue until the last object being placed at Position n. Therefore
we have n! different ways.
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• Suppose we are going to choose only r (r ≤ n) objects from the set of n objects,
how many distinct sequences are there?

The answer of the problem is called the number of permutation and is denoted
by nPr.

Since there are n possible objects to be places at Position 1. After placing an
object in Position 1, there are n − 1 possible objects to be placed at Position 2.
After it has been placed, there are n−2 objects to be placed at Position 3. The ar-
gument can continue until the rth object being placed at Position r. Finally we have

nPr =
n!

(n− r)!
= n× (n− 1)× · · · × (n− r + 1).
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• One may also interest in the number of ways that r elements can be selected
from n(r ≤ n) elements independent of the order. The answer of the question
is called the number of combination and is denoted by nCr.

Since there are nPr permutations of length r, if the order is ignored then we have
to divide nPr by r!, because there are r! permutation of a sequence of r distinction
objects.

In fact, it is given by the following formula:

nCr =

(
n
r

)
=

n!

r! (n− r)!
.

Exercise 1. Show that (
n
r

)
=

(
n

n− r

)
.

Exercise 2. Show that
r!× nCr = nPr.
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Example 1. Three balls are randomly selected from a box which contains four
balls with numbers 1, 2, 3 and 4. How many different possible combinations are
there?

There are a total of four balls and we are going to select three of them. Hence,
n = 4 and r = 3. Applying the combination formula, one gets(

4
3

)
=

4!

3! (4− 3)!
=

24

6× 1
= 4.

In fact, we can list out all the possible combinations as follows.

{123, 124, 134, 234}.

We note that in the above example, in counting the combinations, the followings
are equivalent and will count as one combination only

{123, 132, 213, 231, 312, 321}.

Exercise 3. Let A = {1, 2, 3, 4, 5, 6}, how many distinct subsets of A are of size
two? Recall that {1, 2} ⊂ A and {1, 2} = {2, 1}.
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4.1 Stirling’s Formula*

This subsection is optional and it aims at providing an approximation for n!.

For large value of n, it can be shown that

n! ≈
√
2nπ

(n
e

)n

=
√
2πe

(n
e

)n+1
2

which is called the Stirling formula.

• Thus if n is large then we have

2nCn =

(
2n
n

)
=

(2n)!

n!n!
≈

√
4nπ

(
2n
e

)2n
√
2nπ

(
n
e

)n · √2nπ
(
n
e

)n .
Hence we have

2nCn ≈ 22n√
πn

.
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Figure 1: St Augustine and Monica by Ary Scheffer (1846). Taken from Wikipedia.

5 Some History of Probability*

This section is optional and it aims to introduce some story of probability.

With the advent of Christianity, the concept of random events developed by
philosophers was rejected in the early time. According to St. Augustine (354-
430), nothing occurred by chance, everything being minutely controlled by the will
of God. If events appear to occur at random, then it is because of our ignorance
and not in the nature of events. One should only seek for the will of God instead
of looking at patterns of behavior in aggregates of events. 1

1Poker faces: the life and work of professional card players by David M. Hayano, UCP Press, 1982.
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The amazing contents and applications of probability theory owes its origin to a
question on gambling (game).

The question was raised by Chevalier de Mere (1607-1684) on his problem of
throwing a die. He had a title Chevalier (Knight) and educated at Mere. The
problem was solved by Pascal. 2

5.1 Problem 1

De Mere made considerable money over the years in betting double odds on
rolling at least one “6” in 4 throws of a fair die (six faces).

He then thought that the same should occur for betting on at least one double-
six in 24 throws of two fair dice (This is their ancient believes). It turned
out that it did not work well.

Why? In 1654, he challenged his friends Pascal and Fermat for the reasons.

2Religion reformation (1517-1648) and Enlightenment age (1637-1789).
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Figure 2: Pascal (1623-1662) (Left). Fermat (1601-1665) (Right). Taken from Wikipedia.
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The probability of getting no “6” in four independent throws of a fair die:

(5/6)× (5/6)× (5/6)× (5/6) =
625

1296
.

Therefore the probability of having at least one “6” in 4 throws will be equal to

1− 625

1296
=

671

1296
= 0.5177 > 0.5000.

This explained why de Mere got a good amount of money on double odds on his bet.

This is not a fair game, the player has advantage over the house.
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The probability of getting no double “6”in the throw of two fair dice is

1− (
1

6
× 1

6
) =

35

36
.

The probability of getting no double “6” in “24” independent3 throws is

(
35

36
)24.

Therefore the probability of having at least one double 6 in 24 throws is equal to

1− (
35

36
)24 = 0.4914 < 0.5.

This explained why de Mere did not get a good amount of money on double odds
on this bet.

Again this is not a fair game, the house has advantage over the player.

3We shall define and discuss this concept later
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5.2 Problem 2

• Two Players A and B are playing a series of games which requires to score 5
points (games) in order to win. In each game there is no draw.

At the moment that Player A is leading 4 points to 3 points, the game was in-
terrupted and cannot continue. How should the players divide the stakes on the
unfinished game?

8th Point 9th Point Final Winner
A Wins A Wins Player A
A Wins B Wins Player A
B Wins A Wins Player A
B Wins B Wins Player B

Assume all the 4 outcomes are equal likely then the stake should be divided by the
ratio 1:3 (B:A).

Exercise 4. Suggest another method to divide the stake.
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5.3 Further Development

C. Huygens (a teacher of Leibniz), learned of the incident. Later in 1657, he
published the first book on probability; entitled “De Ratiociniis in Ludo Aleae”, it
was a study on problems related to gambling. Probability soon became popular,
and developed rapidly during the 18th century and the major contributors were J.
Bernoulli (1654-1705) and A. de Moivre (1667-1754).

In 1812 P. Laplace (1749-1827) introduced new ideas and mathematical tech-
niques in his book, Theorie Analytique des Probabilites. He applied probabilistic
ideas to many scientific and practical problems such as mathematical statistics, ac-
tuarial mathematics and statistical mechanics etc. Many workers then contributed
to the theory, e.g. Chebyshev, Markov and Kolmogorov. 4

4Taken from Calculus, Volume II by Tom M. Apostol (2nd edition, John Wiley & Sons, 1969 )
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One of the main difficulties in “mathematicalizing” probability was its definition.
The search for a generally acceptable definition took nearly 300 years.

It was finally resolved in the 20th century by treating probability theory on an
axiomatic basis. In 1933 a monograph by a Russian mathematician A. Kol-
mogorov gave an axiomatic approach that forms the basis for the modern theory.

Kolmogorov’s monograph is available in English translation:

Foundations of Probability Theory, Chelsea, New York, 1950.

Since then the ideas have been refined somewhat and probability theory is now part
of a more general discipline known as measure theory.

13



6 Samples Spaces and Events

This section discusses the elementary concepts of probability. In our daily ac-
tivities, we always experience the sense of uncertainty. Take for a simple example,
when we toss a fair coin, we may have a Head (H) or a Tail (T). One can never tell
exactly the outcome. If you throw a fair dice you may get 1, 2, 3, 4, 5 or 6 dots. In
fact, each of the above actions is called an experiment and each of the possible
outcomes of the experiments is called an event.

An experiment is defined to be any process which generates well defined outcomes.
This means that on any single repetition of the experiment, one and only one
of the possible experimental outcomes will occur.

A sample space is defined as the set of all possible experimental outcomes. Any
particular outcome is referred to as a sample point and is called an element of
the sample space. Using the language of set, the sample space of tossing a coin is
{H,T} and the sample space of throwing a dice is {1, 2, 3, 4, 5, 6}.
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Here let us introduce the concept of an event. An event is a collection of one or
more of the outcomes of an experiment. An event that includes one and only one of
the (final) outcomes for an experiment is called a simple event and is usually de-
noted by Ei. A compound event is a collection of more than one outcome
for an experiment. With the concepts of “outcome” and “event”, we are going to
define the “probability of an event”.

Probability is a numerical measure of the likelihood that a specific event will
occur. Let Ei be a simple event and A be a compound event. The following are
two important properties of probability. The probability of an event always lies in
the range from zero to one, i.e.

0 ≤ P (Ei) ≤ 1 for all i, and 0 ≤ P (A) ≤ 1.

Furthermore, the sum of the probabilities of all simple events (or final outcomes)
for an experiment, denoted by

∑
P (Ei) is always equal to one, i.e.

P (E1) + P (E2) + . . . + P (En) =

n∑
i=1

P (Ei) = 1.
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7 Basic Probability Rules

Strictly speaking, probability is a set function P that assigns to each event A in
the sample space S a number P (A), called the probability of the event
A, such that the following properties (Axioms)5 are satisfied:

(i) 0 ≤ P (A) ≤ 1,

(ii) P (S) = 1,

(iii) If A1, A2, A3, . . . are events such that Ai ∩ Aj = ϕ for i ̸= j, then

P (A1 ∪ A2 ∪ A3 ∪ . . .) = P (A1) + P (A2) + P (A3) + . . . .

Property (iii) implies that for any finite collection of events A1, . . . , An, we have

P (A1 ∪ A2 ∪ A3 . . . ∪ An) = P (A1) + P (A2) + P (A3) + . . . + P (An)

provided that the events are mutually exclusive, i.e.,

Ai ∩ Aj = ϕ if i ̸= j.

The following propositions give some important properties of the probability set
function.

5(Taken from Wikipedia) An axiom is a premise or starting point of reasoning. As classically conceived, an axiom is a premise so evident as to be accepted
as true without controversy.
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The first proposition tells that the probability sum of an event and its complement
A′ must be one.

Proposition 1. For any event A, P(A) = 1 - P(A′).

Proof. Since S = A ∪ A′ and A ∩ A′ = ϕ, it follows that

1 = P (S) = P (A ∪ A′) = P (A) + P (A′).

Hence P (A) = 1− P (A′).

Proposition 2. If ϕ is the empty set, then P (ϕ) = 0.

Proof. Since A = A ∪ ϕ and A ∩ ϕ = ϕ, we have

P (A) = P (A ∪ ϕ) = P (A) + P (ϕ).

Hence P (ϕ) = 0.

Proposition 3. If events A and B are such that A ⊆ B, then P (A) ≤ P (B).

Proof. We note that (i) B = A ∪ (B ∩A′)6 and (ii) A and B ∩A′ are mutually
exclusive because A ∩ (B ∩ A′) = ϕ. Therefore we have

P (B) = P (A) + P (B ∩ A′) ≥ P (A)

because P (B ∩ A′) ≥ 0.
6You may verify this by using the Venn diagram. Or since for any sets X,Y, Z, we have X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z). Let X = A, Y = B,Z = A′,

we have R.H.S. = (A ∪B) ∩ (A ∪A′) = (A ∪B) ∩ S = B ∩ S = B.
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Proposition 4. If A and B are any two events, then

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. The event A ∪B can be represented as a union of disjoint sets, that is,

A ∪B = A ∪ (A′ ∩B).7

Hence
P (A ∪B) = P (A) + P (A′ ∩B). (7.1)

Similarly, we can express B in terms of union of disjoint sets, that is,

B = (A ∩B) ∪ (A′ ∩B).8

Thus
P (A′ ∩B) = P (B)− P (A ∩B). (7.2)

Combining Equations (7.1) and (7.2), we get the result.

Exercise 5. If A,B,C are any three events, show that

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C).

7You may verify this by using the Venn diagram. Or since for any sets X,Y, Z, we have X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z). Let X = A, Y = A′, Z = B,
we have R.H.S. = (A ∪A′) ∩ (A ∪B) = S ∩ (A ∪B) = A ∪B.

8You may verify this by using the Venn diagram. Or since for any sets X,Y, Z, we have X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z). Let X = B, Y = A,Z = A′,
we have R.H.S. = (B ∩A) ∪ (B ∩A′) = (A ∪A′) ∩B = S ∩B = B.
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8 Conditional Probability, Independent Events and Bayes’ Theorem

In this section, we are going to introduce the concepts of conditional probabil-
ity.

• In some situations, when extra information about an event is known then the
probability of the occurrence of the event will be different.

•When a dice is thrown and you are asked to guess the result. Then the probability
that you can get a correct answer is of course 1/6.

But if you are told that the number of dots got is an even number, then you know
that the result should be 2, 4 or 6 and 1, 3 and 5 should be excluded.

Hence your chance of getting a correct answer increases from 1/6 to 1/3.
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If A and B are two events, then the conditional probability of A is written as
P (A|B) ( read as “the probability of A given B has already occurred”) and defined
as

P (A|B) =
P (A ∩B)

P (B)
.

Proposition 5. Let A,B be two events of a sample space S. Then

(i) 0 ≤ P (B|A) ≤ 1.

(ii) P (S|A) = 1.

(iii) P (B1 ∪ . . . ∪Bn|A) = P (B1|A) + . . . + P (Bn|A) if Bi ∩Bj = ϕ for i ̸= j.

Proof. (i) It is easy to see that the following inequalities hold.

0 ≤ P (B|A) = P (A ∩B)

P (A)
≤ P (A)

P (A)
= 1.
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(ii) By definition we have the following

P (S|A) = P (S ∩ A)

P (A)
=

P (A)

P (A)
= 1.

(iii) We note that

P (B1 ∪B2 ∪ . . . ∪Bn|A) =
P ((∪n

i=1Bi) ∩ A)

P (A)
=

P (∪n
i=1(Bi ∩ A))

P (A)
.9

Since (A ∩Bi) ∩ (A ∩Bj) = A ∩Bi ∩Bj = A ∩ ϕ = ϕ, we have

P (B1 ∪B2 ∪ . . . ∪Bn|A) =
P (B1 ∩ A)

P (A)
+
P (B2 ∩ A)

P (A)
+ . . . +

P (Bn ∩ A)

P (A)
.

By definition, we have

P (Bi|A) =
P (Bi ∩ A)

P (A)
for i = 1, 2, . . . , n

and therefore

P (B1 ∪B2 ∪ . . . ∪Bn|A) = P (B1|A) + P (B2|A) + . . . + P (Bn|A).

9Recall that A ∩ (B1 ∪B2 ∪ · · · ∪Bn) = (A ∩B1) ∪ (A ∩B2) ∪ · · · ∪ (A ∩Bn).
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Proposition 6. (The Bayes’ Theorem) Suppose that B1, B2, . . . , Bn are n
mutually exclusive events and the union of these events is the entire sample
space S. Then

P (Bi|A) =
P (Bi)P (A|Bi)

P (B1)P (A|B1) + . . . + P (Bn)P (A|Bn)
.

Proof. Since
A = A ∩ S = A ∩ (∪n

i=1Bi)

and
A ∩ (∪n

i=1Bi) = ∪n
i=1(A ∩Bi),

we have

P (A) = P (∪n
i=1(A ∩Bi)) =

10

n∑
i=1

P (A ∩Bi) =
11

n∑
i=1

P (A|Bi)P (Bi).

Hence

P (Bi|A) =
P (A ∩Bi)

P (A)
=

P (Bi)P (A|Bi)∑n
i=1 P (A|Bi)P (Bi)

.

10Since (A ∩Bi) ∩ (A ∩Bj) = ϕ for i ̸= j, we may apply the third axiom.
11By definition, we have P (A ∩Bi) = P (A|Bi)P (Bi).
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Finally let us define the concept of independence of two events.

Definition 1. Two events A and B are independent if

P (A ∩B) = P (A)P (B).

Remark 1. If A and B are independent then

P (A|B) =
P (A ∩B)

P (B)
= P (A)

and

P (B|A) = P (A ∩B)

P (A)
= P (B).

This means that the outcome of event A will have no effect on the outcome of event
B and vice versa.
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Example 2. In a manufacturing plant, there are three machines, B1, B2 and B3,
producing 50%, 30% and 20%, respectively, of the products. It is known from the
past experience that 1%, 2% and 3% of the products made by each machine, respec-
tively, are defective. Now, suppose that a finished product is randomly selected.
What is the probability that it is defective? If a product was chosen randomly and
was found to be defective, what is the probability that it was made by machine B3?

This is an application of probability model to quality control and machine mainte-
nance. It will cover the first two learning outcomes. 12

Let us define the following events.

A is the event that the product is defective;
B1 is the event that the product was made by machine B1;
B2 is the event that the product was made by machine B2;
B3 is the event that the product was made by machine B3.

12(1) Demonstrate knowledge and understanding of the essential engineering mathematics as well as their relationship to the engineering problems in
general. (2) Model an engineering problem into a mathematical form or a mathematical model, which can be an algebraic equation, a differential equation,
a graph, or some other mathematical expression.
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We have
P (B1) = 0.5, P (B2) = 0.30, P (B3) = 0.20

and
P (A|B1) = 0.01, P (A|B2) = 0.02, P (A|B3) = 0.03

Therefore we have

P (A) = P (B1)P (A|B1) + P (B2)P (A|B2) + P (B3)P (A|B3)

= (0.5)(0.01) + (0.3)(0.02) + (0.2)(0.03)

= 0.005 + 0.006 + 0.006

= 0.017.

Using Bayes’ theorem, we write

P (B3|A) =
P (B3)P (A|B3)

P (B1)P (A|B1) + P (B2)P (A|B2) + P (B3)P (A|B3)

=
(0.2)(0.03)

(0.5)(0.01) + (0.3)(0.02) + (0.2)(0.03)

=
0.006

0.017

=
6

17
.
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9 Discrete and Continuous Random Variables

Many problems have “uncertainty” in nature. An event is uncertain means that
it is not deterministic, you can never know the result before it happens. For ex-
ample, when we toss a fair coin, the result can be a head or a tail. We can never
know the result until the coin is tossed. The concept of “probability distribution”
is a useful tool for describing and modeling these uncertain events.

• Probability also helps us in solving many other practical problems. In this section,
we are going to introduce the concept of a random variable and probability
distribution or probability density function (p.d.f.). They are useful tools
to describe uncertain events.

• There are two types of probability distributions: the discrete type and the
continuous type. For a probability distribution, no matter it is discrete or con-
tinuous, in this course, we will pay a lot of attention to itsmean and its variance.

26



The mean of a probability distribution describes the average behavior of the uncer-
tainty.

The variance measures how the “uncertainty” deviate from the mean.

A random variable is a variable whose value is determined by the outcome of a
random experiment. In other words, its value is not deterministic. There are two
types of random variables, the discrete random variable and the continuous
random variable.

A random variable that assumes countable values (for example, the sample
space S ⊆ Z) is called a discrete random variable.

A random variable that can assume any value contained in one or more intervals is
called a continuous random variable.
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Table 1: The credit cards

Number of cards Owned frequency Relative frequency (Probabilities)

0 50 50/1000 = 0.05

1 550 550/1000 = 0.55

2 250 250/1000 = 0.25

3 100 100/1000 = 0.10

4 50 50/1000 = 0.05

N = 1000 Sum = 1.00

Example 3. Table 1 gives the frequency and relative frequency distributions of
the credit cards owned by all 1000 families living in a certain area. Suppose one
family out of the 1000 is randomly selected. The act of randomly selecting a family
is called a random experiment.

Let X denotes the number of credit cards owned by the selected family. Then X
can be any one of the five possible values (0, 1, 2, 3 and 4) listed in the first column
of the Table 1.

The value of X depends on which family is selected. Thus, this value depends on
the outcome of a random experiment.
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The probability distribution or probability density function (p.d.f.) of
a discrete random variable (r.v.) lists all the possible values that the random
variable can assume and their corresponding probabilities.

We note that the probability distribution of a discrete random variable has
the following two characteristics:

(i) 0 ≤ p(x) ≤ 1 for each x and

(ii)
∑

x p(x) = 1.

Moreover, the function

F (t) =
t∑

x=−∞
p(x)

is called the cumulative probability distribution of X . Moreover,

P (X ≥ a) =

∞∑
x=a

p(x) and P (X ≤ b) =

b∑
x=−∞

p(x).
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Table 2: The probability distribution (incomplete) of errors

Number of errors 0 1 2 3 4 5 more than 5

Probability 0.01 0.05 0.04 0.20 0.30 0.30 0.10

Example 4. Table 2 lists the probability distribution of the number of reading
errors of a hard disk per 1010 bits of data based on the past historical data. Find
the probability that the number reading errors for the hard disk per 1010 bits of
data is (i) one to two (ii) more than three.
Let x denotes the number of errors for this machine during a given week. We can
calculate the required probabilities as follows.
(i) The probability of one to two reading errors is given by the sum of the proba-
bilities of 1 and 2 reading errors.

P (1 to 2 reading errors) = P (1 ≤ X ≤ 2) = P (X = 1) + P (X = 2) = 0.09.

(ii) The probability of more than three reading errors is obtained by adding the
probabilities of 4, 5 and more than 5 reading errors.

P (more than three errors) = P (X > 3)

= P (X = 4) + P (X = 5) + P (X > 5)

= 0.30 + 0.30 + 0.10 = 0.70.
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In the continuous case, the random variables can assume values on a continuous
scale. A random variable X is said to be a continuous random variable if there
exists a function p(x), the probability density function satisfies
(i) p(x) ≥ 0 and;
(ii)

∫∞
−∞ p(x)dx = 1. (summation is replaced by integration)

Moreover, the function

F (t) =

∫ t

−∞
p(x)dx

is called the cumulative probability distribution of X .

One can compare this with the probability distribution in the discrete case. The
probability P (a ≤ X ≤ b) is defined as

P (a ≤ X ≤ b) =

∫ b

a

p(x)dx.

Similar to the discrete case we have

P (X ≥ a) =

∫ ∞

a

p(x)dx and P (X ≤ b) =

∫ b

−∞
p(x)dx.
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Example 5. Consider the function

p(x) =

{
3x2 if 0 ≤ x ≤ 1
0 otherwise.

Determine if it is a probability distribution. If “yes” find P (X ≥ 0.5). 13

We note that p(x) ≥ 0 for any x ∈ [0, 1]. Secondly, we see that∫ ∞

−∞
p(x)dx =

∫ 1

0

3x2dx = 1.

Therefore p(x) is a probability distribution. Now

P (X ≥ 0.5) =

∫ ∞

0.5

p(x)dx =

∫ 1

0.5

3x2dx = 1− 0.53 =
7

8
.

13Different from the case of discrete probability distribution, here we have P (X ≥ 0.5) = P (X > 0.5).
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Example 6. The normal distribution has the form

f (x) =
1√
2πσ

e
−(x−µ)2

2σ2 , −∞ < x < ∞.

Given
∫∞
−∞ e

−x2

2 dx =
√
2π, show that f (x) is a probability density function.

We note that f (x) is non-negative and we need to show that 14

I =

∫ ∞

−∞

1√
2πσ

e
−(x−µ)2

2σ2 dx = 1.

We consider the substitution

y =
x− µ

σ
then

dy

dx
=

1

σ
.

The upper and lower limits for y are ∞ and −∞ respectively. Then

I =

∫ ∞

−∞

1√
2πσ

e
−y2

2 σdy =

∫ ∞

−∞

1√
2π

e
−y2

2 dy = 1.

This is an example of solving a problem in normal distribution model by a mathe-
matical technique. It will cover the third learning outcome. 15

14An exercise in Tutorial 1
15(3) Solve the model by selecting and applying a suitable mathematical method, skill or technique learned.
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Exercise 6. Suppose the demand of certain new product follows the uniform
distribution on [a, b] (where a < b).

The probability density function takes the form:

f (x) =

{
K a ≤ x ≤ b
0 otherwise.

Here K is a positive constant to be determined.

(a) Show that if K = 1
b−a then f (x) is a probability density function.

(b) Find the probability that the demand of a new product lies in [a, (b + 2a)/3].
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10 The Expectation of a Random Variable

Let X be a random variable with probability distribution p(x).

The mean or the expected value is defined as

µ = E(X) =
∑
x

xp(x) if x is discrete,

and

µ = E(X) =

∫ ∞

−∞
xp(x)dx if x is continuous.

The meaning of E(x) is the long-run average of the random variable X .
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Example 7. Find the mean number of heads obtained in tossing a fair coin twice.

We multiply each value of x by its probability and add these products. This sum
gives the mean of the probability distribution of X where X is the number of heads
obtained in tossing the coin twice.

p(X = 0) = (
1

2
)2 = 0.25, p(X = 1) = (

1

2
×1

2
)+(

1

2
×1

2
) = 0.50, p(X = 2) = (

1

2
)2 = 0.25.

The mean, denoted by µ is

E(X) = µ =

2∑
x=0

xp(x) = 0× 0.25 + 1× 0.5 + 2× 0.25 = 1.

When the experiment of tossing the fair coin twice is performed many times, then
in certain occasion we will observe no head; for sometimes we will observe 1 head;
and for sometimes we will observe 2 heads.

The mean number of heads obtained in the experiments will tend to 1.
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Let us look at an example of continuous random variable.

Example 8. Let X be the random variable that denotes the lifetime in hours
of a certain light bulb. We assume it follows the exponential distribution:
f (t) = λe−λt for t ≥ 0 with λ = 1/1000. Then the probability density function is
given by

f (x) =

{
1

1000e
− x

1000 x ≥ 0
0 elsewhere.

Find the expected lifetime of this type of light bulb.

By definition and apply integration by parts,

µ = E(X) =

∫ ∞

0

x

1000
e−x/1000dx

= −
∫ ∞

0

xd(e−x/1000)

= −xe−x/1000
∣∣∣∞
0

+

∫ ∞

0

e−x/1000dx = 1000.

16

16 lim
x→∞

x

ex/1000
= 0.
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The concept of expectation E(X) can be generalized to the case of general ex-
pectation of functions E(g(X)).

Let x be a random variable with probability distribution p(x).

The mean or expected value of the random variable g(x) is defined as

µg(X) = E [g(X)] =
∑
x

g(x)p(x) if X is discrete,

and

µg(X) = E [g(X)] =

∫ ∞

−∞
g(x)p(x)dx if X is continuous.

We remark that if X and Y are two independent randoms variables then we have

E(X + Y ) = E(X) + E(Y ) 17

and
E(XY ) = E(X)E(Y ). 18

17If X follows p(x) and Y follows q(y) then E(X+Y ) =
∑

x

∑
y(x+y)p(x)q(y) =

∑
x

∑
y xp(x)q(y)+yp(x)q(y) =

∑
x

∑
y xp(x)q(y)+

∑
x

∑
y yp(x)q(y) =∑

x xp(x) +
∑

x p(x)E(Y ) = E(X) + E(Y ).
18If X follows p(x) and Y follows q(y) then E(XY ) =

∑
x

∑
y xyp(x)q(y) =

∑
x xp(x)

∑
y yq(y) = E(X)E(Y ).
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Table 3: The probability distribution

x 0 1 2 3 4 5

p(x) 0.1 0.1 0.2 0.2 0.3 0.1

Example 9. Consider a 24-hour car park with five parking space. Let X be the
random variable representing the number of cars parking per hour and it has the
probability distribution given in Table 3. Suppose the parking fee is $20 each car
per hour and $5 per hour is paid to the operator of the car park. Find the expected
earnings of the car park (per hour). The profit function per hour is

g(X) = 20X − 5

which represents the amount of money in dollars, paid to the car park manager.
Thus E(g(X)) is the expected earnings per hour.

E [g(X)] = E [20X − 5] =
∑
x

(20x− 5) p(x)

= (2× 0− 5)
1

10
+ (20× 1− 5)

1

10
+ (20× 2− 5)

1

5

+(20× 3− 5)
1

5
+ (20× 4− 5)

3

10
+ (20× 5− 5)

1

10
= 51.

We see that the average daily earnings of the car park is 24× $51 = $1224.
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Example 10. Let X be the random variable representing the duration of an
distant call in minutes. HereX is a random variable follows the following probability
density function

f (x) =

{
a
√
x 0 ≤ x ≤ 100

0 elsewhere,

where a is a constant. Suppose the cost per minute of a call is $5 and there is a
$10 service charge. Find the expected cost (5X + 10).

We first find the constant a. Since

1 =

∫ 100

0

a
√
xdx =

2ax3/2

3

∣∣∣∣100
0

=
2000a

3
.

Thus a = 3/2000.

E(5X + 10) =

∫ 100

0

3(5x + 10)

√
x

2000
dx = 310.

The above two examples demonstrate an interrelation among mathematical the-
ory, result and a operation management problem and therefore the fourth learning
outcome. 19

19(4) Have a general grasp on the interrelation among mathematical theory, result and the engineering problem.
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Example 11. Let X be a discrete random variable taking values in {0, 1, 2, . . . , }
and having probability distribution pi = P (x = i). We observe that

E(X) = 0p0 + 1p1 + 2p2 + 3p3 + 4p4 + . . .+
= (p1 + p2 + p3 + p4 + . . .) + (p2 + p3 + p4 + . . .) + (p3 + p4 + . . .) + . . .+
= G(1) +G(2) +G(3) + . . .

where

G(x) = 1− F (x− 1) = 1−
x−1∑
i=0

pi

and F (x) is the cumulative probability distribution. Thus we have

E(X) =

∞∑
i=0

(1− F (i)).
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11 The Variance of a Random Variable

Let X be a random variable with probability distribution p(x) and mean µ. The
variance of X , denoted by Var(X), is defined as

σ2 = E
[
(X − µ)2

]
=
∑
x

(x− µ)2 p(x) if X is discrete

and

σ2 = E
[
(X − µ)2

]
=

∫ ∞

−∞
(x− µ)2p(x)dx if X is continuous.

The variance is a measure of how “dispersive” the random variable from the
mean is.

Suppose that the variance is very close to zero, then the probability of getting a
data drawn from the distribution close to the mean µ is very large.

The square root of variance is called the standard deviation.
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Table 4: The probability distribution

x 0 1 2 3 4 5

p(x) 0.1 0.1 0.2 0.2 0.3 0.1

Table 5: The values of (x− µ)2p(X = x)

x 0 1 2 3 4 5

(x− µ)2p(x) 0.784 0.324 0.128 0.008 0.432 0.484

Let us calculate the variance of the distribution in the car park example.

Example 12.We recall that the density function of the car park example is given
in Table 4. To find V ar(X), we first find E(X).

µ = E(X) = 0 · 1

10
+ 1 · 1

10
+ 2 · 1

5
+ 3 · 1

5
+ 4 · 3

10
+ 5 · 1

10
= 2.8.

Table 5 gives (x− µ)2P (X = x) for x = 0, 1, 2, 3, 4, 5. V ar(X) is then given by

0.784 + 0.324 + 0.128 + 0.008 + 0.432 + 0.484 = 2.52.
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In the following, we are going to introduce a useful formula for relating variance
and mean and therefore computation of variance.

Proposition 7. The variance of a random x is given by

σ2 = E
(
X2

)
− µ2 = E(X2)− E(X)2.

Proof. Here we prove the formula for discrete random variable case. For the case
of continuous variable the proof is similar. In the discrete case, one can write

σ2 =
∑
x

(x− µ)2 f (x) =
∑
x

(
x2 − 2xµ + µ2

)
f (x)

=
∑
x

x2f (x)− 2µ
∑
x

xf (x) + µ2
∑
x

f (x).

Since by definition

µ = E(X) =
∑
x

xf (x) and
∑
x

f (x) = 1

for any discrete probability distribution, it follows that

σ2 =
∑
x

x2f (x)− µ2 = E
(
X2

)
− µ2.
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In the following we relate the variance of a stock price with its risk.

Example 13. Consider two stocks (A) Telecom and (B) Bank of East Asia. Sup-
pose the yearly return in billions of these two stocks A and B are given by

pA(x) =
3

x4
, 1 ≤ x

and
pB(x) = 0.5e−0.5x, 0 ≤ x

respectively.

One can show µB = 2 and µA = 1.5. Furthermore, we have

E(X2
B) = 8 and E(X2

A) = 3.

Hence we get

σ2
B = 8− 22 = 4 and σ2

A = 3− 1.52 = 0.75.

Thus we conclude the followings:
(i) The expected return of stock A is less than stock B.
(ii) The variance of return of stock A is less than stock B.
Stock B is more risky than stock A though that it has a higher expected return.

45



Similar to the case of Mean, the concept of Variance can be further generalized as
follows.

Let X be a random variable with probability distribution p(x). The variance of
the random variable g(x) is

σ2
g(X) = E

[(
g(X)− µg(X)

)2]
=
∑
x

(
g(x)− µg(x)

)2
p(x)

if X is discrete and

σ2
g(X) = E

[(
g(X)− µg(X)

)2]
=

∫ ∞

−∞

(
g(x)− µg(x)

)2
p(x)dx

if X is continuous.
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12 Means and Variances of Linear Combinations of Random Variables

In this section, we will discuss several formula for the calculation of mean and vari-
ance. The formula are presented as propositions and proved for the case of discrete
random variable. For the continuous case, the proofs are similar so we leave them
as exercises.

Very often, we know the value E(X) for a distribution p(x). But we want to find
for instance E(aX + b) where a and b are constants. Of course we can find it by
the definition that

E(aX + b) =
∑
x

(ax + b)p(x).

Is there any shortcut if we know µ = E(X)?

Yes. The following proposition provides an answer.
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Proposition 8. If a and b are constants, then

E(aX + b) = aE(X) + b.

Proof.

E(aX + b) =
∑
x

(ax + b)p(x)

=
∑
x

axp(x) +
∑
x

bp(x)

= a
∑
x

xp(x) + b
∑
x

p(x)

= aE(X) + b

because
E(X) =

∑
x

xp(x) and
∑
x

p(x) = 1.

How about the case for Var(aX + b)?

In fact, we have similar result as follows.
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Proposition 9. If a and b are constants, then

σ2
aX+b = a2σ2.

Proof. By definition,

σ2
ax+b = E

[
((aX + b)− µaX+b)

2
]
.

Since
µaX+b = E (aX + b) = aµ + b.

we have,

σ2
aX+b = E

[
((aX + b)− aµ− b)2

]
= a2E

[
(X − µ)2

]
= a2σ2.
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Let us apply the above propositions to solving the following problem.

Example 14. Let x be a random variable whose probability density function is
the uniform distribution p(x):

p(x) =

{
1 for 0 ≤ x ≤ 1
0 otherwise.

Find E(2X + 1) and V ar(2X + 1). First of all, we have

E(X) =

∫ 1

0

xdx =
1

2
and

E(X2) =

∫ 1

0

x2dx =
1

3
.

Thus

V ar(X) = E(X2)− E(X)2 =
1

3
− 1

4
=

1

12
.

Using the above propositions we have

E(2X + 1) = 2E(X) + 1 = 1 + 1 = 2

and

V ar(2X + 1) = 22Var(X) =
4

12
=

1

3
.
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Proposition 10. If X1 and X2 are two independent random variables having
the same probability density function whose variance is σ2 then

σ2
X1+X2

= 2σ2.

Proof. By definition,

σ2
X1+X2

= E
[
((X1 +X2)− µX1+X2)

2
]
.

Since
µX1+X2 = E (X1 +X2) = µ + µ.

we have

σ2
X1+X2

= E
[
((X1 +X2)− (µ + µ))2

]
= E

[
(X1 − µ)2

]
+ E

[
(X2 − µ)2

]
+ 2E [(X1 − µ) (X2 − µ)]

= E
[
(X1 − µ)2

]
+ E

[
(X2 − µ)2

]
+ 0 = 2σ2.

Remark 2. We recall that if X and Y are independent random variables then
E(XY ) = E(X)E(Y ). Thus E(X1− µ)(X2− µ) = E(X1X2) + µ2− µ(E(X1) +
E(X2)) = E(X1)E(X2) + µ2 − 2µ2 = 2µ2 − 2µ2 = 0.
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Exercise 7. Let X1, X2, . . . , Xn be n independent random variables sharing the
same probability distribution with mean µ and variance σ2.

Let

X̄ =
X1 +X2 + . . . +Xn

n
.

What are the values of
E(X̄) and V ar(X̄)?

What will happen when n → ∞?

Please interpret the result.
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12.1 Results in Large Number of Independent Observations*

This section is optional and we state without proof of an important result.

Proposition 11. Let X1, X2, . . . , Xn be a sequence of independent and identi-
cal distributed random variables having mean µ and finite variance σ2. Then
we have

P

(
lim
n→∞

X1 +X2 + . . . +Xn

n
= µ

)
= 1.

This is the famous Strong Law of Large Numbers.
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Summary

1. Combination

2. Permutation

3. Sample space

4. Random variable

5. Conditional probability and independent events

6. Probability density function (p.d.f.)

7. Cumulative probability distribution

8. Uniform distribution

9. Exponential distribution

10. Normal distribution

11. Expected value E(X)

12. Variance V ar(X)

13. V ar(X) = E(X2)− E(X)2
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