
13 Bernoulli Experiment and Its Related Distributions

An experiment is called a Bernoulli experiment if there are only two possible
outcome: success with probability p and failure with probability (1 − p) where
0 < p < 1.

We sayX is a Bernoulli random variable or p(x) isBernoulli distribution B(p)
if

p(x) =

{
p if x = 1,
1− p if x = 0.

Here X = 1 represents the outcome is “success” and X = 0 represents the outcome
is “failure”.
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13.1 Bernoulli Distribution

Proposition 1. The mean µ and variance σ2 of the Bernoulli distribution are
given by p and (p− p2) respectively.

Proof. Since
µ = E(X) = 0 · p(0) + 1 · p(1) = p

we have
E(X2) = 02 · p(0) + 12 · p(1) = p

and
σ2 = E(X2)− µ2 = p− p2.
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Example 1. The number of head X obtained in tossing a fair coin is a Bernoulli
experiment with p = 0.5 and probability distribution:

p(x) =

{
0.5 if x = 1,
0.5 if x = 0.

Moreover, the expected number of head is 0.5 and the variance is

0.5− 0.52 = 0.25.
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13.2 Geometric Distribution

One may also think of the following interesting situation. We perform a series of
Bernoulli experiments (tossing a coin) until we get the first success (first head) then
we stop. Each Bernoulli trial is independent.

Independent trial means that one occurrence (or non-occurrence) of an event
does not influence the successive occurrences or non-occurrence of that event.

What is the probability p(x) that we get the first success (the first head) in the xth
experiment?

4



Suppose the probability of success is p, then in the first (x− 1) trials, we must get
(x− 1) failures (tails), the probability is (1− p)x−1.

At the xth trial we must get a success (head) hence the probability is for getting
the first head at the xth trial is

p(x) = (1− p)x−1p, x = 1, 2, 3, . . . .

We note
p(x) ≥ 0

and ∞∑
x=1

p(x) = 1.

Thus p(x) is a discrete distribution and it is called the geometric distribution
Geo(p).
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Example 2. In an one-machine production system, everyday the machine has a
probability of 0.01 to be broken. Find the probability that the machine can survive
over one month (more than 30 days).

The probability that the machine breaks down on the xth day is

p(x) = 0.01 · (0.99)x−1, x = 1, 2, 3, . . . .

The probability that it will break down within one month is

0.01

30∑
x=1

(0.99)x−1 = 1− 0.9930.

Thus the probability that the machine can survive over one month will be

1− (1− 0.9930) = 0.9930 = 0.7397.
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Proposition 2. The mean µ and variance σ2 of the geometric distribution are
given by 1/p and (1− p)/p2 respectively.

Proof. Before we show the results, we need the following formula.

For |y| < 1, we have 

1

1− y
=

∞∑
k=0

yk.

1

(1− y)2
=

∞∑
k=1

kyk−1.

2y

(1− y)3
=

∞∑
k=2

k(k − 1)yk−1.
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NOTE: For |y| < 1, we have 1 + y + y2 + · · ·+ = 1
1−y .

Let
B = 1 + 2y + 3y2 + . . . + then yB = y + 2y2 + 3y3 + . . . + .

We have

(1− y)B = 1 + y + y2 + . . .+ =
1

1− y
.

Hence

B =
1

(1− y)2
.

Let
A = (2)(1)y + (3)(2)y2 + (4)(3)y3 + (5)(4)y4 + . . .+

Then
yA = (2)(1)y2 + (3)(2)y3 + (4)(3)y4 + (5)(4)y5 + . . .+

and
(1− y)A = (2)(1)y + (2)(2)y2 + (2)(3)y3 + (2)(4)y4 + . . . + .

Therefore

A =
2y

1− y

{
1 + 2y + 3y2 + 4y3 + . . .+

}
=

2y

1− y
× 1

(1− y)2
=

2y

(1− y)3
.
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We have
µ = E(X)

=

∞∑
x=1

xp(1− p)x−1

= p

∞∑
x=1

x(1− p)x−1 =
p

p2
=

1

p

and
E(X2)− E(X) = E(X(X − 1))

=

∞∑
x=2

x(x− 1)p(1− p)x−1

= p

∞∑
x=2

x(x− 1)(1− p)x−1 = p · 2(1− p)

p3
=

2(1− p)

p2
.

Therefore
σ2 = E(X2)− µ2 = E(X(X − 1)) + µ− µ2

= (
2

p2
− 2

p
) +

1

p
− 1

p2
=

1− p

p2
.
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13.3 Binomial Distribution

One more interesting situation is to obtain x successful trials in n Bernoulli trials.
In fact, an experiment that satisfies the following condition is called a binomial
experiment. There are n identical independent Bernoulli trials. In other words,
the given experiment is repeated n times. All these repetitions are performed under
identical conditions.

The random variable x that represents the number of successes in n trials for a
binomial experiment is called a binomial random variable. The probability
distribution ofX in such experiments is called the binomial probability distribution
or simply binomial distribution Bin(n, p).

In a binomial experiment, the probability of exactly x successes in n trials is
given by the binomial formula

p(x) =

(
n
x

)
px(1− p)n−x

where n, total number of trials; p, probability of a success; 1− p, probability of a
failure; x, number of successes in n trials; n− x, number of failures in n trials.
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We note that

p(x) =

(
n
x

)
px(1− p)n−x ≥ 0

and
n∑

x=0

(
n
x

)
px(1− p)n−x = (p + (1− p))n = 1.1

Thus we see that p(x) is really a probability distribution of discrete type.

Proposition 3. The mean and variance of the binomial distribution are

µ = np and σ2 = npq.

Here q = 1− p.

Exercise 1.To show the above proposition. You may writeX = X1+X2+· · ·+Xn

where Xi are independent Bernoulli random variables. 2 We recall that

E(X1 +X2 + · · · +Xn) = E(X1) + E(X2) + · · · + E(Xn)

and

V ar(X1 +X2 + · · · +Xn) = V ar(X1) + V ar(X2) + · · · + V ar(Xn).
1(a+ b)n =

∑n
r=0 nCr · arbn−r.

2If X follows Bin(n, p) and Y follows Bin(m, p) and they are independent then X + Y follows Bin(m+ n, p).
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Example 3. A fair coin is toss 2n times.
(a)What is the probability that number of heads equal to number of tails?
(b) What happen when n is very large?

(a) We employ the binomial distribution with p = q = 0.5. Then the probability
will be given by

pn =
(2n)!

n!n!

(
1

2

)2n

.

(b) For large n, to analyze the situation, we can employ the Stirling formula in
Page 5 of Part 2:

n! ≈
√
2nπ

(n
e

)n

.

Then we get

pn ≈
22n√
πn

(
1

2
)2n =

1√
πn

.

Thus pn is getting smaller and smaller to zero when n increases.
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13.4 Some Computational Issue

For the Binomial distribution Bin(n, p), we have

pr =
n!

r!(n− r)!
pr(1− p)n−r

and

pr−1 =
n!

(r − 1)!(n− r + 1)!
pr−1(1− p)n−r+1.

Then we have

pr =
(n− r + 1)p

r(1− p)
pr−1 r = 1, 2, . . . , n. (13.1)

Begin with
p0 = (1− p)n

we can compute p1, p2, . . . , pn by using Equation (13.1). This recursive form is
useful when we are asked to compute the probability with n and r being very large.
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13.5 Negative Binomial Distribution

Sometimes we are not just interested in obtaining the first success in the kth
Bernoulli trial like the geometric distribution. But we are interested in obtain-
ing the rth success in the kth trial (k ≥ r ≥ 1).

Now suppose that the probability of success in each independent Bernoulli trial is
p. What is the probability

Br(k, p) where k ≥ r

that the rth success is obtained in the kth trial?

To obtain Br(k, p), we note that we must have a success in the kth trial and
at the same time we must have (r − 1) successes in the first (k − 1) trials.
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The former probability is p and the latter probability is(
k − 1
r − 1

)
pr−1(1− p)k−r.

Since they are independent events so the required probability is

Br(k, p) =

(
k − 1
r − 1

)
pr−1(1− p)k−r×p, 1 ≤ r ≤ k, k = r, r + 1, . . . .

We note that

Br(k, p) =

(
k − 1
r − 1

)
pr(1− p)k−r ≥ 0

and ∞∑
k=r

Br(k, p) = 1.

Thus Br(k, p) is a distribution of discrete type and is called the Negative Bi-
nomial Distribution Br(p). We see that when r is 1, B1(k, p) is the geometric
distribution in k. Thus the negative binomial distribution is a generalization of the
geometric distribution.
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Proposition 4. The mean µ and variance σ2 of the Negative Binomial Dis-
tribution Br(k, p) are r/p and r(1− p)/p2 respectively.

Proof. Recall that the mean and variance of a geometric distributed variable are
1/p and (1−p)/p2 respectively. To obtain the rth success it is equivalent to perform
the geometric process r times. Suppose Y is the number of trials to obtain the rth
success in a sequence of Bernoulli trials, then

Y = X1 +X2 + . . . +Xr,

where xi is the number of the trials to obtain the ith success immediately after the
(i − 1)th success for i = 1, 2, . . . , r. Thus all the xi are independent Geometric
distributed random variables. Hence we have

µ = E(Y ) = E(X1) + E(X2) + . . . + E(Xr) =
1

p
+ . . . +

1

p
=

r

p

and

σ2 = Var(Y ) = V ar(X1) + V ar(X2) + . . . + V ar(Xr)

=
1− p

p2
+ . . . +

1− p

p2
=

r(1− p)

p2
.
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14 Poisson Distribution

A Poisson random variable X with parameter λ has the probability function

P{X = k} =
λk

k!
e−λ; k = 0, 1, 2, . . . .

Exercise 2. For the above random variable which follows the Poisson distribution
Poi(λ), show that we have

E(X) = V ar(X) = λ.

Hint: we note that
∞∑
k=0

λk

k!
= eλ and

∞∑
k=0

k × λk

k!
=

∞∑
k=1

λ
λk−1

(k − 1)!
= λeλ

and ∞∑
k=0

k(k − 1)× λk

k!
=

∞∑
k=2

λ2 λk−2

(k − 2)!
=

∞∑
k=0

λk

k!
= λ2eλ.

Then we have V ar(X) = E(X2)− E(X)2 = E(X(X − 1)) + E(X)− E(X)2. 3

3E(X(X − 1)) =
∑∞

x=0 x(x− 1)p(x) =
∑∞

x=0(x
2 − x)p(x) =

∑∞
x=0 x

2p(x)−
∑∞

x=0 xp(x) = E(X2)− E(X).
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Example 4. The arrival process of customers follows a Poisson distribution with
mean 2 per hour. Find the probability of having at least one arrival of customer in
one hour.

The probability of having no customer in one hour is p0 = e−2 · 20

0! . Therefore the
probability of having at least one customer will be

1− p0 = 1− e−2 = 0.8647.

Remark: For the Poisson distribution Poi(λ), we have

pr =
λr

r!
e−λ and pr−1 =

λr−1

(r − 1)!
e−λ.

Then we have

pr =
λ

r
pr−1, r = 1, 2, . . . , n. (14.1)

Begin with
p0 = e−λ

we can compute p1, p2, . . . , pn by using Equation (14.1).
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14.1 From Binomial to Poisson*

This part is optional and is for your information only.

-|
0

|
1/n

|
2/n

|
3/n · · ·

|
1

-� 1/n

The Poisson Process.

• We divide the unit time interval into n equal sub-intervals of length 1/n.
We assume that in each sub-interval, with probability p that there will be an oc-
currence (e.g. an arrival of customer or an accident). And with probability (1− p)
there is no occurrence. Therefore it is a Bernoulli process in each sub-interval.

• We further assume that the probability p is proportional to the length of the sub-
interval, (i.e. p ∝ 1/n) with a positive constant λ. Thus we have p = λ× (1/n). 4

• Assuming independence among all the sub-intervals, the probability of having
exactly k occurrence will follow Bin(n, p):

P{X = k} =
n!

(n− k)!k!
pk(1− p)n−k =

n!

(n− k)!k!
(
λ

n
)k(1− λ

n
)n−k.

4λ = np is the mean of the binomial distribution.
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Suppose we are observing the arrival of customers 1 hour outside a bank.

• Assume that n = 60, i.e., we observe the arrival process in every minute (length of
each interval is 1 minute). We further assume that λ = 5. Then the probability of
having an arrival in each of the sub-interval is λ/n = 5/60 = 1/12 and no customer
will be 11/12. Then the probability of having k = 2 arrived customers in 1 hour is

P{X = 2} =
60!

58!2!
(
1

12
)2(

11

12
)58 = 0.079045.

• Suppose 1 minute is too long, we take n = 3600, i.e., we observe the arrival
process in every second (length of each interval is 1 second). Then the probability
of having an arrival in each of the sub-interval is λ/n = 5/3600 = 1/720 and no
customer will be 719/720. Then the probability of having k = 2 arrived customers
in one hour is

P{X = 2} =
3600!

3598!2!
(
1

720
)2(

719

720
)3598 = 0.084142.

• Finally if λ = 5 and n → ∞ then the probability of having 2 arrived customer
in one hour can be computed by using the Poisson distribution Poi(5)

P{X = 2} = e−55
2

2!
= 0.084224.
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One may “derive” the Poisson distribution from the Binomial distribution by letting
λ = np and n → ∞. We derive the relationship as follows:

P{X = k} =
n!

(n− k)!k!
pk(1− p)n−k

=
1

k!
(p · (n− k + 1)) (p · (n− k + 2)) . . . (p · (n)) (1− p)n−k

=
1

k!

(
(n− k + 1)λ

n

)(
(n− k + 2)λ

n

)
. . . (λ)

(
1− λ

n

)n−k

=
λk

k!
e−λ as n → ∞.

Remark 1.We have for a fixed k,

(n− k + 1)λ

n
→ λ as n → ∞.

Remark 2.We have (
1− λ

n

)n

→ e−λ as n → ∞.
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Remark 3. Suppose X1 and X2 are two independent Poisson random
variables follow Poi(λ1) and Poi(λ2) respectively. Then X = X1 + X2 is
again a Poisson random variable follows Poi(λ1 + λ2).

P (X = y) =

y∑
k=0

P (X1 = k) · P (X2 = y − k)

=

y∑
k=0

e−λ1
λk
1

k!
· e−λ2

λy−k
2

(y − k)!

= e−(λ1+λ2)

y∑
k=0

λk
1

k!
· λy−k

2

(y − k)!

=
e−(λ1+λ2)

y!

y∑
k=0

y!

k!(y − k)!
· λk

1 · λ
y−k
2 =

e−(λ1+λ2)

y!
(λ1 + λ2)

y.

Thus X follows Poi(λ1 + λ2). In general, if Xi follows Poi(λi) (i = 1, 2, . . . , n)
and they are independent then we have

X1 +X2 + · · · +Xn follows Poi(λ1 + λ2 + · · · + λn).

22



15 Normal Distribution

The Normal distribution has a continuous probability density function taking
the following form:

f (x) =
1

σ
√
2π

e
−(x−µ)2

2σ2 for −∞ < x < ∞.

Proposition 5. The mean and variance of the above normal distribution are
µ and σ2 respectively.

Proof. We note that if we apply integration by substitution y = x−µ
σ ,∫ ∞

−∞

x

σ
√
2π

e
−(x−µ)2

2σ2 dx =

∫ ∞

−∞

(σy + µ)√
2π

e
−y2

2 dy

= σ

∫ ∞

−∞

y√
2π

e
−y2

2 dy︸ ︷︷ ︸
=0

+µ

∫ ∞

−∞

1√
2π

e
−y2

2 dy︸ ︷︷ ︸
=µ

.5

Thus we have
E(X) = µ.

5In this course, we assume without proof that
∫∞
−∞ e

−y2

2 dy =
√
2π.
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We then consider the same substitution,

E(X2) =

∫ ∞

−∞

x2

σ
√
2π

e
−(x−µ)2

2σ2 dx =

∫ ∞

−∞

(σy + µ)2√
2π

e
−y2

2 dy.

Thus we have

E(X2) = σ2

∫ ∞

−∞

y2√
2π

e
−y2

2 dy︸ ︷︷ ︸
=σ2

+2σµ

∫ ∞

−∞

y√
2π

e
−y2

2 dy︸ ︷︷ ︸
=0

+µ2

∫ ∞

−∞

1√
2π

e
−y2

2 dy︸ ︷︷ ︸
=µ2

.

For the first term we note that∫
y · y√
2π

e
−y2

2 dy =

∫
y√
2π

e−
y2

2 d(
y2

2
) = −

∫
y√
2π

de
−y2

2 =
1√
2π

(∫
e
−y2

2 dy − ye
−y2

2

)
︸ ︷︷ ︸

integration by part

.

∫ ∞

−∞

y2√
2π

e
−y2

2 dy =
1√
2π

(

∫ ∞

−∞
e
−y2

2 dy︸ ︷︷ ︸√
2π

− ye
−y2

2 |∞−∞︸ ︷︷ ︸
=0

) = 1.

Finally we have

V ar(X) = E(X2)− E(X)2 = σ2 + µ2 − µ2 = σ2.
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15.1 From Binomial to Normal*

This section is optional and it presents the relation between the Binomial distribu-
tion and the Normal distribution.

• Consider the Binomial distribution Bin(n, p) for large n and p ≈ 0.5, i.e.
q = 1− p ≈ 0.5.

• Its mean and variance are given, respectively, by

µ = np and σ2 = np(1− p) = npq

where q = 1− p.

We have

P (X = x) =
n!

x!(n− x)!
pxqn−x, x = 0, 1, 2, · · · , n.

Let y = x− np be small perturbation from its mean µ = np

P (x) =
n!

x!(n− x)!
pxqn−x =

n!

(y + np)!(nq − y)!
pnp+yqnq−y.
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Now we recall the Stirling’s formula for large n:

n! ≈
√
2nπ

(n
e

)n

.

• Then we have

(y + np)! ≈
√
2(y + np)π

(y + np

e

)y+np

and

(nq − y)! ≈
√
2(nq − y)π

(
nq − y

e

)nq−y

.

We have

P (x) ≈
√

n

2π(np + y)(nq − y)
× nnpnp+yqnq−y

(np + y)np+y(nq − y)nq−y
.
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• We note that √
n

2π(np + y)(nq − y)
≈

√
1

2πnpq
(15.1)

and

nnpnp+yqnq−y

(np + y)np+y(nq − y)nq−y
=

(
np

np + y

)np+y (
nq

nq − y

)nq−y

=
1

K
.

• Now we note that

K =

(
1 +

y

np

)np+y (
1− y

nq

)nq−y

and we have

logeK = (np + y) loge

(
1 + y

np

)
+ (nq − y) loge

(
1− y

nq

)
≈ (np + y)

(
y
np −

y2

2n2p2
+ y3

3n3p3

)
+(nq − y)

(
− y

nq −
y2

2n2q2
− y3

3n3q3

)
because for small z, |z| < 1 we have

loge(1 + z) ≈ z − z2

2
+
z3

3
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We have

logeK ≈ y2

2n
(
1

p
+

1

q
) +

y3

6n2
(
1

q2
− 1

p2
) + higher power of

1

n2
.

Hence for large n, we keep the first term and drop the others. Then we obtain

K ≈ e
y2

2npq or
1

K
≈ e−

y2

2npq . (15.2)

Combining the results in Equations (15.1) and (15.2) we have (using the parameters
of Bin(n, p)) :

P (x) ≈ 1√
2πnpq

e−
y2

2npq .

Replace npq by σ2, np by µ and y by x−np = x−µ, we have (using the parameters
of mean µ and variance σ2):

P (x) ≈ 1√
2πσ

e−
1
2(

x−µ
σ )2.

This is the normal distribution N(µ, σ2).
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15.2 Properties of a Normal Distribution

1. Usually we denote a normal distribution of mean µ and variance σ2 byN(µ, σ2).

2. We note that the probability function

f (x) =
1

σ
√
2π

e
−(x−µ)2

2σ2

is symmetric at the mean x = µ.

3. The mean, mode and the median of the distribution are equal to µ.

4. The C.D.F. is

Φ(t) =

∫ t

−∞

1

σ
√
2π

e
−(x−µ)2

2σ2 dx.

When µ = 0, we have for t ≥ 0

Φ(−t) = 1− Φ(t).

5. Suppose Z1 and Z2 are two independent normal random variables
follow N(µ1, σ

2
1) and N(µ2, σ

2
2) respectively. Then Z = Z1 + Z2 is a normal

random variable follows N(µ1 + µ2, σ
2
1 + σ2

2). We shall assume this is true
without a proof.
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15.3 Standard Normal Distribution

Suppose the random variable X follows N(µ, σ2), i.e., the p.d.f. of X is

f (x) =
1

σ
√
2π

e
−(x−µ)2

2σ2 for −∞ < x < ∞.

We then consider a new random variable

Z =
X − µ

σ
.

• For this z we note that its mean is

E(Z) = E

(
X − µ

σ

)
=

E(X)− µ

σ
=

µ− µ

σ
= 0

and its variance is

V ar(Z) = V ar

(
X − µ

σ

)
=

1

σ2
V ar(X − µ) =

σ2

σ2
= 1.

• After this transform, we have another normal random variable whose mean is
shifted to 0 and its variance is scaled to 1.
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• What is the probability density function of Z?

We note that

P (Z ≤ z) = P

(
X − µ

σ
≤ z

)
= P (X ≤ σz + µ) =

∫ σz+µ

−∞

1

σ
√
2π

e
−(x−µ)2

2σ2 dx.

Now by considering the substitution

y =
x− µ

σ
we have

dy

dx
=

1

σ
and ∫ σz+µ

−∞

1

σ
√
2π

e
−(x−µ)2

2σ2 dx =

∫ z

−∞

1√
2π

e−
y2

2 dy

which is the C.D.F. of N(0, 1) which is called the standard normal distribu-
tion. Thus any normal distribution N(µ, σ2) can be converted to the standard
normal distribution N(0, 1). And the following table gives the probabilities:

P (Z ≤ z) = Φ(z) =

∫ z

−∞

1√
2π

e−
x2

2 dx

31



The following table gives the probability P (Z ≤ z) = Φ(z) =
∫ z

−∞
1√
2π
e−

x2

2 dx.
z .0000 .0100 .0200 .0300 .0400 .0500 .0600 .0700 .0800 .0900
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
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Example 5. LetX follows the normal distributionN(2, 22), find the probabilities:
(a) P (X ≤ 3); (b) P (1 ≤ X); (c) P (1 ≤ X ≤ 3).

We have that µ = 2 and σ = 2.
(a) We note that X ≤ 3 is equivalent to Z = X−2

2 ≤ 3−2
2 = 0.5.

Thus X ≤ 3 is equivalent to Z ≤ 0.5. Then from the table we have

P (X ≤ 3) = P (Z ≤ 0.5) = Φ(0.5) = 0.6915.

(b) We note that 1 ≤ X is equivalent to −0.5 = 1−2
2 ≤ x−2

2 = Z.
Thus 1 ≤ X is equivalent to −0.5 ≤ Z. Then from the table we have

P (1 ≤ X) = P (−0.5 ≤ Z) = P (Z ≤ 0.5) = Φ(0.5) = 0.6915.

(c) Since
P (X ≤ 1) = 1− P (1 ≤ X) = 1− 0.6915 = 0.3085.

We have

P (1 ≤ X ≤ 3) = P (X ≤ 3)− P (X ≤ 1) = 0.6915− 0.3085 = 0.3830.

Exercise 3. Let x follows the normal distribution N(1, 9). Find
(a) P (X ≤ 1.4); (b) P (X ≤ −1.22); (c) Hence find P (−1.22 ≤ X ≤ 1.4).
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Example 6. Find k such that P (Z ≥ k) = 0.1 where z follows the standard
normal distribution.

We note that for that k, we have

P (Z ≤ k) = 1− 0.1 = 0.9.

From the table we have

Φ(1.28) = 0.8997 and Φ(1.29) = 0.9015.

Therefore we know k ∈ (1.28, 1.29) and we try to approximate k by using a linear
approximation (linear interpolation):

0.9− 0.8997

k − 1.28
=

0.9015− 0.8997

1.29− 1.28
=

0.0018

0.01
= 0.18.

Thus

k ≈ 1.28 +
1

600
.

Exercise 4. Find k such that P (−k ≤ Z ≤ k) = 0.97 where Z is the standard
normal random variable.
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Example 7. Find P (z ≥ −1.285) where z ∼ N(0, 1).
• By symmetry of the standard normal distribution, we have

P (z ≥ −1.285) = P (z ≤ 1.285) = q

• However, 1.285 has three decimal places and therefore we cannot find the proba-
bility in the table.

• But we have

P (z ≤ 1.29) = 0.9015 and P (z ≤ 1.28) = 0.8997

and therefore 0.8897 < q < 0.9015. We then apply the linear approximation
method again:

q − 0.8997

1.285− 1.28
=

0.9015− 0.8997

1.29− 1.28
and

q = 0.8997 + 0.18× 0.005 = 0.9006.
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15.4 Some Special Probability

• We have
P (−1 ≤ Z ≤ 1) ≈ 0.68

and
P (−2 ≤ Z ≤ 2) ≈ 0.95

and
P (−3 ≤ Z ≤ 3) ≈ 0.99.

• In order words for any x follows N(µ, σ2) we have

P (µ− σ ≤ X ≤ µ + σ) ≈ 0.68

and
P (µ− 2σ ≤ X ≤ µ + 2σ) ≈ 0.95

and
P (µ− 3σ ≤ X ≤ µ + 3σ) ≈ 0.99.
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16 Applications of Normal Distribution

Example 8. Suppose the salary of a group of 1000 civil servants follows the nor-
mal distribution N(10000, 10002).
(a) Find the number of civil servants having salary less than 10500.
(b) What is the lowest salary of the top 200 civil servants?

We note that µ = 10000 and σ = 1000.

(a) Let X be the salary of a civil servant, then we have

p = P (X ≤ 10500) = P

(
Z ≤ (10500− 10000)

1000

)
= P (Z ≤ 0.5) = 0.6915︸ ︷︷ ︸

from the N(0,1) table

.

Here the probability is obtained from the table.

Thus the number of civil servants is

1000× 0.6915 ≈ 692.
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(b) We are to find k such that

P (X ≤ k) =
1000− 200

1000
= 0.8

i.e.,

P

(
Z ≤ k − 10000

1000

)
= Φ

(
k − 10000

1000

)
= Φ(K) = 0.8.

We note that
Φ(0.84) = 0.7995 and Φ(0.85) = 0.8023.

Thus 0.84 ≤ K ≤ 0.85, and we apply linear approximation and get

0.8− 0.7995

K − 0.84
=

0.8023− 0.7995

0.85− 0.84
.

Therefore K = 0.8418 = (k − 10000)/1000 and hence k = 10842.

Exercise 5. A machine produces tubes of length 1m. Assume the length of the
tubes follows the normal distribution N(1, 0.04). If the length of a tube has a
deviation less than 0.1m from the mean (Class A), the profit is 100 dollars. If the
deviation more than 0.1m but less than 0.2 from the mean (Class B), the profit is
50 dollars. However, if the deviation is more than 0.2 (Class C), then it incurs a
loss of 80 dollars. If 1000 tubes are produced, what will be expected profit?
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16.1 Approximation of Binomial Distribution and Poisson Distribution by Normal Distribution

For a large λ, Poi(λ) can be approximated by N(λ, λ). And for a large n, a
Binomial r.v. follows Bin(n, p) can be approximated by N(np, np(1− p)).

Example 9. A fair coin is tossed 100 times. Find the probability that the number
of heads obtained is between 48 and 52 by using the normal approximation. We
note that µ = 100 × 0.5 = 50 and σ2 = np(1 − p) = 100 × 0.5 × 0.5 = 25. The
area of the following five rectangles are approximated by P (47.5 ≤ X ≤ 52.5).

P

(
47.5− 50

5
≤ Z ≤ 52.5− 50

5

)
= P (−0.5 ≤ Z ≤ 0.5) = 1−2(1−0.6915) = 0.383.6

| | | | |
48 49 50 51 52

· · ·· · ·

Exercise 6. A biased coin is tossed 200 times (probability of getting a head is
0.5). Find the probability that the number of heads obtained is between 98 and
102 by using the normal distribution approximation.

6Since we are approximating a p.d.f. of a discrete random variable by a continuous one, some adjustment has to be made so as to get a better approximation.
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16.2 Central Limit Theorem*

This section is optional and it aims at introducing theCentral Limit Theorem.

Proposition 6. Let X1, X2, . . . , Xn be a sequence of independent, identically
distributed random variables with mean µ and variance σ2. Then the following
random variable tends to the normal distribution with mean 0 and variance 1
as n → ∞:

Zn =
X1 +X2 + . . . +Xn − nµ

σ
√
n

=
X̄n − µ

σ/
√
n
.

This is called the Central Limit Theorem.

Example 10. Let us give a heuristic argument for the Stirling formula.

Let Y1, Y2, . . . , Yn be n independent Poisson random variables having same mean
1 (i.e., they follow Poi(1)). Then

Zn = Y1 + Y2 + . . . + Yn,

the sum of the n Poisson random variables is also a Poisson random variable with
mean n and variance n (i.e., Zn follows Poi(n)).
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We have

P (Zn = n) = P (n− 1
2 ≤ Zn ≤ n + 1

2)

= P (
−1

2
√
n
≤ Zn − n√

n
≤ 1

2
√
n
)

≈
∫ 1

2
√
n

−1
2
√
n

1√
2π

e
−x2

2 dx ≈
∫ 1

2
√
n

−1
2
√
n

1√
2π

dx =
1√
2πn

.

Because for large n we have

Zn − n√
n

∼ N(0, 1)

and e
−x2

2 ≈ 1 for x ∈ ( −1
2
√
n
, 1
2
√
n
).

Now since Zn is a Poisson random variable

P (Zn = n) =
e−nnn

n!

therefore we have
n! ≈ nn+1

2e−n
√
2π.
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A Summary

1. Bernoulli experiment

2. Bernoulli distribution B(p)

3. Geometric distribution Geo(p)

4. Binomial distribution Bin(n, p)

5. Negative Binomial distribution Br(k, p)

6. Poisson distribution Poi(λ)

7. Normal distribution N(µ, σ2)

8. The standard normal distribution N(0, 1)

9. Linear (interpolation) approximation method

10. Normal approximates Binomial

11. Normal approximates Poisson
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