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Abstract. Apollonian gaskets are formed by repeatedly filling the interstices between four
mutually tangent circles with further tangent circles. We experimentally study the nearest
neighbor spacing, pair correlation, and electrostatic energy of centers of circles from Apol-
lonian gaskets. Even though the centers of these circles are not uniformly distributed in
any ‘ambient’ space, after proper normalization, all these statistics seem to exhibit some
interesting limiting behaviors.

1. introduction

Apollonian gaskets, named after the ancient Greek mathematician, Apollonius of Perga
(200 BC), are fractal sets obtained by starting from three mutually tangent circles and iter-
atively inscribing new circles in the curvilinear triangular gaps. Over the last decade, there
has been a resurgent interest in the study of Apollonian gaskets. Due to its rich mathematical
structure, this topic has attracted attention of experts from various fields including number
theory, homogeneous dynamics, group theory, and as a consequent, significant results have
been obtained.

Figure 1. Construction of an Apollonian gasket

For example, it has been known since Soddy [23] that there exist Apollonian gaskets with
all circles having integer curvatures (reciprocal of radii). This is due to the fact that the
curvatures from any four mutually tangent circles satisfy a quadratic equation (see Figure
2). Inspired by [12], [10], and [7], Bourgain and Kontorovich used the circle method to prove
a fascinating result that for any primitive integral (integer curvatures with gcd 1) Apollonian
gasket, almost every integer in certain congruence classes modulo 24 is a curvature of some
circle in the gasket.

In another direction, Kontorovich and Oh [16] obtained an asymptotic result for counting
circles from an Apollonian gasket P using the spectral theory of infinite volume hyperbolic
spaces, which was originally developed by Lax-Phillips [17]. Their result is stated below.
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Theorem 1.1 (Kontorovich-Oh). Fix an Apollonian gasket P, and let PT be the collection
of circles in this gasket with curvatures less than T . As T approaches infinity,

lim
TÑ8

#PT
T δ

“ cP ,

where cP is a positive constant depending on the gasket P, and δ « 1.305688 is the Hausdorff
dimension of any Apollonian gasket.

The reason for all Apollonian gaskets to have the same Hausdorff dimension is that they
belong to the same conformally equivalent class. In other words, for any two fixed gaskets,
one can always find a Möbius transformation which maps one gasket to the other. The
estimate δ « 1.305688 was obtained in [19].

Kontorovich and Oh’s result was refined by Oh and Shah [20] using homogeneous dynam-
ics.

Theorem 1.2 (Oh-Shah). For any Apollonian gasket P placed in the complex plane C,
there exists a finite Borel measure µ, such that for any region R Ă C with piecewise analytic
boundary (see Figure 3), the cardinality of PT pRq, the set of circles from PT lying in R,
satisfies

lim
TÑ8

PT pRq
T δ

“ µpRq.

Figure 2. An integer Apollo-
nian gasket

Figure 3. A region R with
piecewise analytic boundary

Theorem 1.2 gives a satisfactory explanation on how circles are distributed in an Apollo-
nian gasket on large scale. However, it yields little information on questions concerning the
fine scale distribution of circles. For example, one such question is the following.

Question 1.3. Fix s ą 0. If one sits at the center of a random circle from PT , how many
circles can one see within a distance of s{T?

The fine structures of Apollonian gaskets are encoded by local spatial statistics. In this
article, we report our empirical results on some of such statistics, namely, nearest neighbor
spacing, pair correlation, and electrostatic energy. We find numerically that after proper
normalization all these statistics exhibit some interesting limiting behavior when the grow-
ing parameter T approaches infinity. Our conjectures in this direction are based on these
numerical results. In particular, a rigorous proof of Conjecture 2.2 will provide an asymptotic
answer to Question 1.3 when T is large.
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These spatial statistics have been widely used in disciplines such as physics and biol-
ogy. For instance, in microscopic physics, the Kirkwood-Buff Solution Theory [15] links the
pair correlation function of gas molecules, which encodes the microscopic details of the dis-
tribution of these molecules, to macroscopic thermodynamical properties of the gas such as
pressure and potential energy. On a macroscopic level, cosmologists also use pair correlations
to predict the likelihood of finding one galaxy in a neighborhood of another galaxy.

Within mathematics, there is a rich literature on the spatial statistics of point processes
arising from various settings. A stunning application of pair correlation is a discovery made
by Montgomery and Dyson. They found that the pair correlation function of the Riemann
zeta zeros agrees with that of the eigenvalues of random Hermitian matrices. This relation
(still unproven rigorously) appears to give evidences to Hilbert and Pólya’s speculation that
the Riemann zeta zeros correspond to the eigenvalues of a self-adjoint operator on a Hilbert
space. Spatial statistics from some other point processes have otherwise been rigorously
established: gap distribution of the fractional parts of p

?
nq by Elkies and McMullen [9],

distribution of directions of lattices points [6], [5], [14], [21], [18], [8], distribution of Farey
sequences [13], [4], [3], and gap distribution of saddle connection directions in translation
surfaces [1], [2], [24], gap distribution of tangencies in circle packings [22]. Our list of
interesting works here is far from inclusive.

There is a fundamental difference between all mentioned works above and our investigation
of circles. In their work, the underlying point sequences become uniformly distributed in
their ‘ambient’ spaces. In our case, we parametrize each circle by its center and define the
distance between two circles to be the Euclidean distance between their centers. Thus, our
study of circles becomes the study of their centers. However, the set of centers is clearly
not even dense in any reasonable ambient space such as D, the disk bounded by the largest
circle of the gasket. In fact, we notice that centers tend to cluster over some tiny regions and
meanwhile we can find plenty of holes in D in which no center can be found. Consequently,
we need different normalizations of parameters, as hinted in the last author’s work [25] on
the gap distribution of a point orbit of an infinite-covolume Schottky group.

2. Experimental results and conjectures

The point process under our investigation is CT , the set of centers of circles from PT ,
where PT is the collection of all circles in P with curvatures smaller than T . In this section,
we provide data for the (normalized) spatial statistics such as electrostatic energy, nearest
neighbor spacing, pair correlations and state our conjectures. All gaskets under consideration
here come from four mutually tangent circles C0, C1, C2, C3 with C0 bounding the other three
and of radius 1. We use C-coordinates for these circles so that C0 “ tz P C : |z| “ 1u, and
C1 is tangent to C0 at e0i “ 1. Suppose that C2 and C3 are tangent to C0 at eθ1i and
eθ2i, respectively. The pair pθ1, θ2q then uniquely determines an Apollonian gasket which we
denote by Ppθ1, θ2q.

2.1. Nearest spacing. For the set CT and a point x P CT , we let gT pxq to be the distance
between x and a closest point in CT to x. The nearest spacing function HT psq for the set CT
is then defined as

HT psq :“
1

#CT

ÿ

xPCT

1 tgT pxq ¨ T ă su , (1)
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where 1tAu is the indicator function which has the value 1 if the condition A is true, and 0
otherwise.

From Theorem 1.2, we have #CT „ cPT
δ. If these centers were randomly distributed

in D, then a typical point is at the distance of — 1{T δ{2 to its nearest neighbor, and we
can normalize this distance by multiplying with T δ{2. Here for two quantities M1,M2, the
relation M1 —M2 means that there exists c1, c2 ą 0 such that c1M1 ăM2 ă c2M1.

But CT is not typical of a random distribution: it tends to converge to the packing P as
T grows. In consequence, we need to normalize gT by multiplying with T instead of T δ{2.
The reason is that from Theorem 1.1, most circles in the family PT have radius — 1{T , and
two tangent circles in CT having radius — 1{T also have distance — 1{T (recall that the
distance between two circles is the Euclidean distance between their centers), so that 1{T is
the right scale to measure the local spacing of circles. In Section 2.2 we also use the same
normalization for the pair correlation functions.

Figure 4. The nearest neighbor spacing function HT psq for various T ’s

Figure 4 is the plot of the nearest spacing function for the gasket Pp1.8
3
π, 3.7

3
πq for various

T ’s, which depicts some convergence behavior. We observe that HT ” 0 on the interval
r0, cq for some c ą 0. This can be explained by the following: any two circles C1, C2 P PT
have radius ą 1{T , so the distance of their centers p, q is ą 2{T . Therefore, we always have
dpp, qqT ą 2.

Based on Figure (4), we pose the following conjecture.

Conjecture 2.1. There exists a non-negative, monotone, continuous function H on r0,8q
which is supported away from 0 such that

lim
TÑ8

HT psq “ Hpsq,

for any s P r0,8q, where HT psq is defined as in (1).

2.2. Pair correlation. The pair correlation function FT psq for the set CT is defined to be

FT psq :“
1

2#CT

ÿ

p,qPCT
p‰q

1 tdpp, qqT ă su ,

where dp¨, ¨q is the Euclidean distance function. Again, a typical distance between two nearby
circles in PT is — 1{T , so we need to normalize dp¨, ¨q by multiplying with T . We have a
factor 1{2 in FT psq because we only want to count each pair of points once.
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Let
Npp, T, sq “

ÿ

qPCT
q‰p

1tdpp, qqT ă su

Then Npp, T, sq counts the number of circles in PT having distance s{T to the circle centered
at p.

Writing

FT psq “
1

2#CT
ˆ

ÿ

pPCT

Npp, T, sq,

we see that FT psq can be interpreted as one half of the expectation of the number of circles
one can see within a distance s{T , when one sits at the center of a random circle in PT .

Figure 5 is the empirical plot for the pair correlation function FT for the gasket Pp1.8
3
π, 3.7

3
πq,

with various values of T taken. It seems that these curves indeed stay close to each other.
It suggests that the answer to Question 1.3 can be described by a continuous monotone
function, when T is large.

We can also study the pair correlation function for centers restricted to some subset R of
C:

FT,Rpsq :“
1

2#CT,R

ÿ

p,qPCT,R
p‰q

1 tdpp, qqT ă su , (2)

where CT,R “ CT XR.
By convention if R “ C, we can also omit R from this notation. Figure 6 is the plot of

F1000,R for the gasket Pp1.8
3
π, 3.7

3
πq, with R “ C, R “ tz P C|<z ą 0u and R “ tz P C|<z ą

0,=z ą 0u respectively. These three curves indeed seem to be close to each other.
In Figure 7 we also plot “F 1T psq”, the empirical derivative for FT psq, defined by F 1T psq “

FT ps`0.1q´FT psq
0.1

, for the gasket Pp1.8
3
π, 3.7

3
πq. Our plot suggests that the derivative of FT exists

and is continuous. The turbulent manner of the plot indicates that a rigorous proof of this
claim might be difficult.

Figure 8 is the plot for the pair correlation function FT for three different Apollonian
gaskets Pp1.1

3
π, 3.5

3
πq, Pp2.5

3
π, 3.5

4.2
πq, and Pp2.9

3
π, 3.2

3
πq. It appears that their limiting pair

correlation should be the same.

Figure 5. The plot for FT
with various T’s

Figure 6. Pair correlation for
the whole plane, half plane and
the first quadrant
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Figure 7. The empirical de-
rivative F 1T psq, with different T
taken

Figure 8. Pair correlation
functions for different Apollo-
nian gaskets

Based on these findings, we make the following conjecture.

Conjecture 2.2. For any Apollonian gasket P, and any R Ă C with µpRq ą 0, there exists
a nonnegative, monotone, continuously differentiable function F on r0,8q which is supported
away from 0 such that

lim
TÑ8

FT,Rpsq “ F psq

for any s P r0,8q, where FT,Rpsq is defined in (2). Moreover, the function F is independent
of the chosen Apollonian gasket.

We observe that the normalized pair correlation of circles from an Apollonian gasket is
close to the pair correlation of angles of hyperbolic lattice points (compare Figure 7 above
and Figure 3 from [14]).

2.3. Electrostatic Energy. The electrostatic energy function GpT q is defined by

GpT q :“
1

T 2δ

ÿ

p,qPCT
p‰q

1

dpp, qq
. (3)

The definition (3) agrees with the definition of electrostatic energy for an array of electrons
in physics, with an extra normalizing factor 1{T 2δ, where δ « 1.305688 is the Hausdorff
dimension of P . This energy depends on both the global distribution of the points as well
as a moderate penalty if there are points too close to each other.

The heuristic for the normalizing factor 1{T 2δ can be explained as follows: For a randomly
chosen p P CT , from Theorem 1.2, we know Npp, T, T q — T δ. Assume Npp, T, sq — sδ. Then

ÿ

qPCT
q‰p

1

dpp, qq
“

ż 2T

1

1

s{T
dNpp, T, sq (4)

“
Npp, T, 2T q

2
` T

ż 2T

1

Npp, T, sq

s2
ds (5)

—T δ ` T

ż 2T

1

sδ´2ds

—T δ,
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where we interpret the integral in (4) as a Stieltjes integral, and (5) follows from integration
by parts.

Since #CT — T δ, heuristically we should have
ÿ

p,qPCT
p‰q

1

dpp, qq
“

1

2

ÿ

pPCT

ÿ

qPCT
q‰p

1

dpp, qq
— T 2δ.

Figure 9. The electrostatic energy function GpT q for Pp1.8
3
π, 3.7

3
πq

Our experiment suggests that GpT q converges to some positive constant when T gets large
(see Figure 9). We formulate this as a conjecture below.

Conjecture 2.3. There exists a constant b ą 0, such that

lim
TÑ8

GpT q “ b,

where GpT q is defined in (3).

3. Conclusion

Our investigation shows that the spatial statistics of Apollonian gaskets exhibit quite
regular behavior, and this is probably due to the fact that these gaskets are highly self-
symmetric. A possible approach to the proposed conjectures might be via homogeneous
dynamics on infinite volume hyperbolic spaces.

There are other natural problems on the fine structures of fractal sets. For instance, Figure
10 is the famous Grand Spiral Galaxy (NGC 1232), which can be simulated by a Mandelbrot
set constructed from complex dynamics (see Figure 11). Both pictures are from [11].

Figure 10. A spiral galaxy Figure 11. A Mandelbrot set
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We pose the following question:

Question 3.1. What can one say about the fine structures of star distribution in a spiral
galaxy?
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