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Abstract. In this paper we study the integral properties of Apollonian-3 circle packings,
which are variants of the standard Apollonian circle packings. Specifically, we study the
reduction theory, formulate a local-global conjecture, and prove a density one version of this
conjecture. Along the way, we prove a uniform spectral gap for the congruence towers of
the symmetry group.

1. Introduction

Apollonian circle packings are well-known planar fractal sets. Starting with three mutu-
ally tangent circles, we inscribe one circle into each curvilinear triangle. Repeat this process
ad infinitum and we get an Apollonian circle packing. Soddy first observed the existence
of some Apollonian packings with all circles having integer curvatures, and we call these
packings integral. The systematic study of the integers from such packings was initiated by
Graham, Lagarias, Mallows, Wilks, and Yan [9] [10]. We first briefly review what is known
for integral Apollonian packings. Fix an integral Apollonian packing P , and let K be the set
of curvatures from P . Without loss of generality we can assume P is primitive (i.e. the gcd
of K is 1). We say an integer n is admissible if it passes all local obstructions (i.e. for any
q, we can find κ ∈ K such that n ≡ κ (mod q)). Finally, let Γ be the orientation-preserving
symmetry group acting on P , which is an infinite co-volume Kleinian group. We have:

(1) The reduction theorem: Fuchs in her thesis [7] proved that an integer is admissible if
and only if it passes the local obstruction at 24.

(2) The local-global conjecture: Graham, Lagarias, Mallows, Wilks, Yan [9] conjectured
that every sufficiently large admissible integer is actually a curvature.

(3)A congruence subgroup: Sarnak [20] observed that there is a real congruence subgroup
lying in Γ. As a consequence, some curvatures can be represented by certain shifted qua-
dratic forms.

(4)The congruence towers of Γ has a spectral gap (See Page 3 for definition): This fact
was proved by Varjü in the appendix of [4], using Theorem 1.2 of [3].

(5)A density one theorem: Building on the works of Sarnak [20], Fuchs [7], and Fuchs-
Bourgain [1], Bourgain and Kontorovich [4] proved that almost every admissible integer is a
curvature, which is a step towards the local-global conjecture.
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Figure 1. An integral Apollonian-3 circle packing

In this paper we generalize the above results to the type of circle packings illustrated in
Figure 1. To construct such a packing, we begin with three mutually tangent circles. We iter-
atively inscribe three circles into curvilinear triangles, and obtain a circle packing, which we
call an Apollonian 3-circle packing, or Apollonian 3-packing. (By comparison, if we inscribe
one circle in each gap, we obtain a standard Apollonian packing.) As shown in Figure 1,
there also exist integral Apollonian-3 packings. This was first observed by Guettler-Mallows
[11].

We carry over the notations P ,K,Γ to our Apollonian-3 setting. We fix a primitive
Apollonian-3 packing P , let K be the set of curvatures from P , and Γ be the orientation-
preserving symmetry group acting on P . We first state a reduction theorem for P .

Theorem 1.1. (Reduction Theorem) An integer n is admissible by P if and only if it passes
the local obstruction at 8.

Let AP be the set of admissible integers of P . In the case of Figure 1,

AP = {n ∈ Z|n ≡ 2, 4, 7(mod 8)}.
A general result from Weisfeiler [24] implies the existence of a number Q which completely

determines the local obstruction. However in practice it’s a hard problem to determine Q.
In our case Q = 8. Technically, we will prove the following lemma, which directly implies
Theorem 1.1. Let Kd be the reduction of K (mod d), and ρpm be the natural projection from
Z/pm+1Z to Z/pmZ. Write d =

∏
i p

ni
i , then we have

Lemma 1.2.
(1) Kq ∼=

∏
iKpnii ,

(2) Kpm = Z/pmZ for p ≥ 3 and m ≥ 0,
(3) ρ−1

2m+1(K2m) = K2m+1 for p = 2 and m ≥ 3.

Based on Theorem 1.1, we formulate the following local-global conjecture:

Conjecture 1.3. (Local-global Conjecture) Every sufficiently large admissible integer from
P is a curvature. Or equivalently,

#{n ∈ K|n ≤ N} = #{n ∈ AP |0 < n ≤ N}+O(1).
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However, it seems that the current technology is not enough to deal with this conjecture.
Instead, we prove a density one theorem:

Theorem 1.4. (Density One Theorem) There exists η > 0 such that

#{n ∈ K|n ≤ N} = #{n ∈ AP |0 < n ≤ N}+O(N1−η).

.

To deduce Theorems 1.1 and 1.4, we need to study the symmetry group Γ̃, or more con-
veniently its orientation preserving subgroup Γ. The group Γ̃ ⊂ Isom(H3) is generated by
eight reflections corresponding to eight mutually disjoint hemispheres, and our Apollonian-3
packing can be realized as the limit set of a point orbit under Γ̃ (see Figure 2). Therefore
Γ is geometric finite. It is clear that Γ\H3 has infinite volume, so Γ is a thin subgroup of
SL(2,C). The local structure of Γ will lead to Theorem 1.1. Here we exploit a crucial fact
that Γ contains a real congruence subgroup, which is the analogue of Sarnak’s observation
for the Apollonian group [20]. This congruence subgroup also implies that some curvatures
can be represented by certain shifted binary quadratic forms (See Theorem 3.1), which is a
key starting point for proving Theorem 1.4.

Another crucial ingredient for Theorem 1.4 is a (geometric) spectral gap for Γ, as we
explain now. For any positive integer q, Let Γ(q) be the principle congruence subgroup of
Γ at q (i.e. Γ(q) = {γ ∈ Γ|γ ≡ I(mod q)}). Let ∆ be the hyperbolic Laplacian operator

associated to the metric ds2 = dx2+dy2+dz2

z2 on H3:

∆ = −z2(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) + z

∂

∂z

The operator ∆ is symmetric and positive definite on L2(Γ(q)\H3) with the standard inner
product. From Larman [16] we know that the Hausdorff dimension δ of our packing P is
> 1. Hence Patterson-Sullivan theory [19][22], together with Lax-Phillips[17] tell us that for
each q, there are only finitely many exceptional eigenvalue for ∆ acting on L2(Γ(q)\H3), and
the base (smallest) eigenvalue λ0(q) of ∆ on L2(Γ(q)\H3) is equal to δ(2− δ).

However, a priori the second smallest eigenvalue λ1(q) might get arbitrarily close to λ0(q).
But in the case of Γ, this phenomenon does not happen:

Theorem 1.5. (Spectral Gap) There exists δ0 > 0 such that for all q,

λ1(q)− λ0(q) ≥ δ0

For the modular group SL(2,Z), the celebrated Selberg 3
16

Theorem says that δ0 ≥ 3
16

.
For an arbitrary finitely generated subgroup of SL(2,Z), a spectral gap when q is ranging
over square free numbers was obtained by Bourgain-Gamburd-Sarnak [3]. Recently this re-
sult was extended to much more general groups by Golsefidy-Varjú[8], again over squarefree
numbers . But for our need, we need to require q to exhaust all integers.

We then follow the strategy in [4] to prove Theorem 1.4. The main approach is the
Hardy-Littlewood circle method. The spectral gap given in Theorem 1.5, together with the
bisector counting result from Vinogradov [23], allows us to do various (thin) lattice point
counting restricted to certain regions of SL(2,C), effectively and with uniform rates over the
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Figure 2. The fundamental domain for Γ̃ and the orbit of an point under Γ̃

congruence towers Γ(q) and their cosets. All these are encoded in Lemma 5.2, Lemma 5.3
and Lemma 5.4 from Bourgain and Kontorovich’s work on Apollonian packings [4]. These
Lemmas can be modified word by word to fit our setting. Another ingredient which appears
in the minor arc analysis is the elementary 3

4
bound for the Kloosterman sums.

Plan for the paper : In §2 we discuss the local properties of K, these properties are
revealed by Γ and its subgroups. Theroems 1.1 and 1.5 are proved at the end of this section.
The main goal of §3 is to prove Theorem 1.4. In §3.1 we introduce the main exponential
sum and give an outline of the proof of Theorem 1.4. In §3.2 we analyze the major arcs, and
from §3.3 to §3.5 we give bounds for three parts of the minor-arc integrals. Finally in §3.6
we conclude our proof.

Notation: We adopt the following standard notations. We write e2πix as e(x), and e
2πix
q

as eq(x). The relation f � g means that f = O(g), and f � g means f � g and g � f . The
Greek letter ε denotes an arbitrary small positive number, and η denotes a small positive
number which appears in several contexts. We assume that each time when η appears, we
let η not only satisfy the current claim, but also satisfy the claims in all previous contexts.
The symbols p and pi always denote a prime. The relation pj||n means pj|n and pj+1 - n.

The expression
∑′

r(q) means sum over all r(mod q) where (r, q) = 1. For a finite set Z, its

cardinality is denoted by |Z| or #Z. For an algebraic group Γ (orA, Ã) over Z, Γ(q) (orA(q),
Ã(q)) denotes its principle congruence subgroup of level q. Without further mentioning, all
the implied constants depend at most on the given packing.

2. Local Property

2.1. Apollonian 3-Group and Its Subgroups. We start with three mutually tangent
circles C1, C2, C3 (suppose C1 is bounding the other two). In each of the two gaps formed
by these three circles, there’s a unique way to inscribe three more circles, in a way that
each of these six circles is tangent to four other circles and disjoint to the last one. Let’s
say C1′ , C2′ , C3′ is one such inscription (see Figure 3). It is known that their curvatures
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κ1, κ2, κ3, κ1′ , κ2′ , κ3′ satisfy the following algebraic relations [11]:

κ1 + κ1′ = κ2 + κ2′ = κ3 + κ3′ := 2w (1)

Q(κ1, κ2, κ3, w) = w2 − 2w(κ1 + κ2 + κ3) + κ2
1 + κ2

2 + κ2
3 = 0 (2)

The Möbius inversion via the dual circle of C1, C2, C3 takes C1′ , C2′ , C3′ to three other
circles C1′′ , C2′′ , C3′′ , which gives the other way of inscribing. There are two solutions for w
in (2), which correspond exactly to two ways of filling.

Figure 3. Reflection via the dual circle of C1, C2, C3

We associate a quadruple r = 〈κ1, κ2, κ3, w〉T to the six circles C1, C2, C3, C1′ , C2′ , C3′ ,
which we call the root circles. There are eight gaps formed by circular triangles. Each gap
corresponds to one Möbius inversion, which takes three of the six root circles to three new

circles and fixes the rest three. We associate a vector v =
〈
x, y, z, w

′〉T
to this new collection

of six circles, where x, y, z are the curvatures of the circles which are the images of C1, C2, C3

under the reflection, and w
′
is the sum of any pair of disjoint circles from this new collection,

as w in (1). From (1) and (2) it follows that x, y, z, w
′

has linear dependance on κ1, κ2, κ3, w.
Eight gaps correspond to eight linear transformations which take r to v:

S123 =


1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 −1

 , S1′23 =


−3 4 4 4
0 1 0 0
0 0 1 0
−2 2 2 3

 ,

S12′3 =


1 0 0 0
4 −3 4 4
0 0 1 0
2 −2 2 3

 , S123′ =


1 0 0 0
0 1 0 0
4 4 −3 4
2 2 −2 3

 ,

S1′2′3 =


−3 −4 4 12
−4 −3 4 12
0 0 1 0
−2 −2 2 7

 , S1′23′ =


−3 4 −4 12
0 1 0 0
−4 4 −3 12
−2 2 −2 7

 ,

S12′3′ =


1 0 0 0
4 −3 −4 12
4 −4 −3 12
2 −2 −2 7

 , S1′2′3′ =


−3 −4 −4 20
−4 −3 −4 20
−4 −4 −3 20
−2 −2 −2 11

 . (3)
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The subtitles of the above notations keep track of the circles forming the triangular gap. For
example, S1′2′3 denotes the reflection via the dual circle of C1′ , C2′ , C3. The group generated

by these eight matrices is called Apollonian 3-group, denoted by Ã:

Ã = 〈S123, S1′23, S12′3, S123′ , S1′2′3, S1′2′3, S1′23′ , S1′2′3′ 〉 (4)

Then we have

K = {〈ei, Ã · r〉|i = 1, 2, 3} ∪ {〈ei, Ã · r
′〉|i = 1, 2, 3} (5)

where r
′

= 〈κ1′ , κ2′ , κ3′ , w〉. It then follows that if the initial six circles have integral curva-
tures, then P is integral.

In light of (7), we reduce studying K to studying the group Ã which acts on some quadru-
ples containing full information of K. A is a Coxeter group with the only relations

S2
123 = S2

1′23
= . . . = I.

It preserves the quadratic 3-1 form Q, so Ãa ⊆ OQ(Z). Furthermore, we pass to its

orientation-preserving subgroup A = A∩SOQ(Z), which is an index-2 subgroup of Ã and a
free group generated by

S123S1′23, S123S12′3, S123S123′ , S123S1′2′3, S123S1′23′ , S123S12′3′ , S123S1′2′3′ . (6)

From (5) we also have

K = {〈ei,A · r〉|i = 1, 2, 3} ∪ {〈ei,A · r
′〉|i = 1, 2, 3} (7)

This is because if a word from Ã consists of odd number of reflections, we can always pre-add
S123 (or S1′2′3′ ) without changing r (or r

′
). The augmented word is even, thus lies in A.

Recall the spin homomorphism ρ0 : SL(2,C) −→ SOQ0 , where Q̃0(x, y, z, t) = t2 − x2 −
y2 − z2 is the standard 3− 1 form (see [6]):

ρ0

((
a b
c d

))
=


<(ad̄+ bc̄) =(ad̄− bc̄) <(−ac̄+ bd̄) <(ac̄+ bd̄)
=(−ad̄− bc̄) <(ad̄− bc̄) =(ac̄− bd̄) =(−ac̄− bd̄)

<(−ab̄+ cd̄) =(−ab̄+ cd̄) |a|2−|b|2−|c|2+|d|2
2

−|a|2−|b|2+|c|2+|d|2
2

<(ab̄+ cd̄) =(ab̄+ cd̄) −|a|2+|b|2−|c|2+|d|2
2

|a|2+|b|2+|c|2+|d|2
2

 (8)

The isomorphism between SOQ0 and SOQ is given by

A −→ J−1AJ,

where

J =


1 0 0 −1
0 1 0 −1
0 0 1 −1

0 0 0
√

2


The spin homomorphism that we use is ρ, defined from SL(2,C) to SOQ̃ as

ρ(γ) = J−1ρ0

((
1 + i −

√
2√

2 1 + i

)
γ

(
1 + i −

√
2√

2 1 + i

)−1
)
J (9)
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The good thing about conjugating γ with

(
1 + i −

√
2√

2 1 + i

)
is that the preimage of the

generators in (6) is

M1 =

(
1 2
−2 −3

)
,M2 =

(
1− 2

√
2i 2

2 + 4
√

2i −3 + 2
√

2i

)
,M3 =

(
1 0
−4 1

)
,M4 =

(
−1 + 2

√
2i −4

−4
√

2i 7− 2
√

2i

)
M5 =

(
−1 2
2 −5

)
,M6 =

(
1 + 2

√
2i −2

−6− 4
√

2i 5− 2
√

2i

)
,M7 =

(
−1− 2

√
2i 4

4 + 4
√

2i −9 + 2
√

2i

)
,

(10)

which all lie in SL(2,Z[
√

2i]), and we let Γ = 〈M1,M2,M3,M4,M5,M6,M7〉.

If we write a = a1 + a2i, b = b1 + b2i, c = c1 + c2i, d = d1 + d2i, one can verify (with the aid

of computer) that ρ maps the matrix

(
a b
c d

)
to a 4× 4 matrix, each entry of which is a

homogenous quadratic polynomial of a1, a2, b1, b2, c1, c2, d1, d2, with half-integer coefficients.
Therefore, ρ can descend to a homomorphism from Γ/Γ(q) to A/A(q) for any q that does
not contain a power of 2.

The group Γ contains a real subgroup ΓC3 = 〈M1,M3,M5〉. Geometrically, ΓC3 fixes the
circle C3. It turns out that ΓC3 is a congruence subgroup:

Proposition 2.1. The group Γ is a congruence subgroup of level 4. Explicitly,

ΓC3 =

{(
a b
c d

)
∈ SL(2,Z)|a ≡ d ≡ 1(mod 2), b ≡ c ≡ 0 or 2(mod 4)

}
(11)

Proof. We notice that the ⊆ direction is straightforward, then we can prove the proposition
by explicitly constructing the fundamental domain (See Figure 4). Indeed once we show that
the fundamental domain of ΓC3 is as shown in Figure 4, we can compute the covolume of
ΓC3 to be 8π, which coincides with the covolume of the group described by the righthand
side of (11), thus the proposition is established.

First we replace the generatorsM1,M3,M5 of ΓC3 by three parabolic generatorsM1,M
−1
3 =(

1 0
4 1

)
,M−1

3 M5 =

(
−1 2
−2 3

)
which fix -1,0,1 respectively. We denote the corresponding

parabolic subgroups by B−1, B0, B1. We have M1(∞) = −1
2
,M−1

3 (−1
2
) = 1

2
and M−1

3 M5(1
2
) =

∞. It turns out that the open region FC3 bounded by the closed loop ∞ → −1 → −1
2
→

0→ 1
2
→ 1→∞ is the fundamental domain for ΓC3 .

Associate the open regions I, II, III (See Figure 4) to B−1, B0, B1, then B−1 maps II, III
to I, B0 maps I, III to II and B1 maps I, II to III. We can apply the Pingpong Lemma to
show that Γ is freely generated by these three elements. To show that FC3 is a fundamental
domain, one needs to show

(i)γ(FC3) ∩ FC3 = ∅ if γ 6= I.

(ii)ΓC3(FC3) = H.
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For (i), first write γ = T1T2 · · ·Tm, where each Ti comes from one of the parabolic sub-
groups B−1, B0 or B1. We say the length of this word is m. We assume the length of the
word is minimal so that Ti, Ti+1 are not in a same parabolic subgroup. Then one can prove
that γ(FC3) lies in one of the regions from I, II, III, which is determined by T1. Since I, II, III
are disjoint from FC3 , (i) is thus proved.

For (ii), suppose z ∈ ΓC3(FC3) = H, we want to show that z lies also in the interior

of Γ(FC3). First one can check that for each side of FC3 , there’s one element γ from
M1,M

−1
1 ,M3,M

−1
3 ,M3M

−1
5 ,M−1

3 M5 such that γ(FC3) and FC3 share this given side. Now
we place a ball of radius ε sitting at each of the cusps −1, 0, 1 and we say the complement
of these balls to FC3 the compact part of FC3 , denoted by F c,εC3

. We define the compact
part of γ(FC3) simply by γ(F c,εC3

). Then there exists a universal constant l(ε) such that if z
lies within the l(ε) distance of some γ(F c,εC3

), then z lies either within γ(FC3) itself, or some

γ
′
(FC3) next to γ(FC3), or on the common boundary of these two domains. In both cases z

is an inner point of ΓC3(FC3).
It’s an elementary geometric exercise to check that any γ ∈ ΓC3 will send these ε-balls

to balls with radii no greater than ε (by induction on the minimal length of word). This
means that if we choose ε = Imz

10
and some l(ε) < Imz

10
, and some γε such that d(γε(FC3)), z) <

min{ Imz
10
, l(ε)}. In other words, z is very close to the compact part of the fundamental

domain γε(FC3). Therefore z is an inner point. Since Γ(FC3) is both open and closed,

Γ(FC3) = H. �

Figure 4. The fundamental domain for ΓC3

Conjugating ΓC3 by

(
1 0√
2i 1

)
, one gets ΓC1 =

(
1 0√
2i 1

)
ΓC3

(
1 0

−
√

2i 1

)
= 〈M2,M3,M6〉,

which is a subgroup of Γ fixing C1. Similarly,

ΓC
3
′ =

(
−1 1 +

√
2i

−1 −1 +
√

2i

)
ΓC3

(
−1 1 +

√
2i

−1 −1 +
√

2i

)−1

=< M−1
7 M3,M

−1
7 M5,M

−1
7 M6 >,

which is a subgroup fixing C3′ .
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Let

Ak(q) = {g1h1j1 . . . gkhkjk : g1, . . . , gk ∈ ΓC3 , h1, . . . , hk ∈ ΓC1 , j1, . . . , jk ∈ ΓC
3
′ } (12)

We have the following proposition:

Proposition 2.2. Let q =
∏

i p
ni
i , then Γ/Γ(q) = A109(q).

Before proving Proposition 2.2, we prove a few lemmas first.

Lemma 2.3. If p ≥ 5, then A54(pm) = Γ/Γ(pm).

Proof. Since ΓC1 is a congruence subgroup of level 4, we have ΓC1/ΓC1(pm) = SL(2,Z/pmZ).
We also have(

b−1 0
0 b

)
·
(
−1

2
0

−7
4
−2

)
·M2

2 ·
(

1 0
−1

4
1

)
·M−1

2 ·
(
b 0
0 b−1

)
=

(
1 0

3
√

2b2i 1

)
.

Now we show that ∀M > 1, we can find at most four elements a, b, c, d ∈ Z/pmZ) such that

a2 + b2 + c2 + d2 ≡M(mod pm)

This is true for m = 1 by the Lagrange’s Four Square Theorem, which states that every
integer can be written as a sum of at most four squares of integers. Choose M

′ ≡M(p) with
0 < M

′ ≤ p, then we can choose a
′
, b
′
, c
′
, d
′

such that

a
′2

+ b
′2

+ c
′2

+ d
′2

= M
′
, (13)

Necessarily all a
′
, b
′
, c
′
, d
′

have to be strictly less than p, and at least one of them is not zero,
thus invertible in Z/pZ. So when mod p, (a

′
, b
′
, c
′
, d
′
) is a regular point on the curve

x2 + y2 + z2 + w2 ≡M
′
(mod p). (14)

The general case follows from Hensel’s lemma by lifting the solution (a
′
, b
′
, c
′
, d
′
) of (14) to

a solution (a, b, c, d) of

x2 + y2 + z2 + w2 = M(mod pm)

This shows that (
1 0

a
√

2i 1

)
∈ A9(pm)

Multiplying the above matrix by

(
1 0
b 1

)
, b ∈ Z/(pm), which can be found in ΓC1 since it

contains

(
1 0
4 1

)
, we have (

1 0
c 1

)
∈ A9(pm)

for any c ∈ Z[
√

2i]/(pm). Conjugating the above element by

(
0 −1
1 0

)
, which is also con-

gruent to some element in ΓC3(mod pm), we have(
1 c
0 1

)
∈ A12(pm)
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for any c ∈ Z[
√

2i]/(pm). Now(
1 a
0 1

)
·
(

1 0
b 1

)
·
(

1 c
0 1

)
=

(
1 + ab a+ c+ abc
b 1 + bc

)
.

This shows that (
a
′
b
′

c
′
d
′

)
∈ Γ/Γ(pm)

for any c
′
invertible in Z[

√
2i]/(pm) and a

′
d
′−b′c′ = 1. There are p3m−1(p−1) such elements.

The size of SL(2,Z[
√

2i]/(pm)) is p3m−3(p − 1)(p2 − 1), which is strictly less than twice of
p3m−1(p− 1), this means that A54(pm) has to be full of the group SL(2,Z[

√
2i]/(pm)). �

Lemma 2.4. A107(2m) = Γ/Γ(2m), and A107(3m) = Γ/Γ(3m)

Proof. We prove the case when p = 2 and explain the difference when p = 3. For p = 2, we
first prove the following claim by induction:

Claim: For every m ≥ 6 and g ∈ Γ(26)/Γ(2m), we can find g1, g2, g3 ∈ ΓC3(23)/ΓC3(2m)
such that

g = g1M2g2M
−1
2 M2

2 g3M
−2
2 .

For m = 6 we can choose g1 = g2 = g3 = 1. For m > 6, we now assume this holds for
m− 1. By the induction hypothesis, there exists h1, h2, h3 ∈ Γ(23) such that

g = h1M2h2M
−1
2 M2

2h3M
−2
2 + 2m−1x(mod 2m)

Now we choose some xi ∈ Mat(2,Z) such that xi ≡ 0(2m−3) and tr(xi) ≡ 0(mod 2m) for
i = 1, 2, 3. We have

g ≡ (h1 + x1)M2(h2 + x2)M−1
2 M2

2 (h2 + x3)m−2
2

− (x1 +M2x2M
−1
2 +M2

2x2M
−1
2 ) + 2m−1x(mod 2m)

Since Det(xi + hi) = 1(2m) and xi + hi ≡ I(23), xi + hi is congruent to some element
gi ∈ ΓC3(mod 2m) using the congruence property of ΓC3 . The matrices x1, x2, x3 can be
chosen as a suitable linear combination of the matrices in the following calculations to cancel
the term 2m−1x:

2m−1

(
0 1
0 0

)
+M20M−1

2 +m2
20M−2

2 ≡ 2m−1

(
0 1
0 0

)
(mod 2m)

2m−1

(
0 0
1 0

)
+M20M−1

2 +m2
20M−2

2 ≡ 2m−1

(
0 0
1 0

)
(mod 2m)

2m−1

(
1 0
0 −1

)
+M20M−1

2 +m2
20M−2

2 ≡ 2m−1

(
1 0
0 −1

)
(mod 2m)

2m−3

(
2 −1
4 −2

)
+M22m−3

(
0 0
1 0

)
M−1

2 +M2
2 0M−2

2 ≡ 2m−1

(
0
√

2i
0 0

)
(mod 2m)

2m−3

(
−2 4
−1 2

)
+M22m−3

(
0 0
1 0

)
M−1

2 +M2
2 0M−2

2 ≡ 2m−1

(√
2i 0√
2i −

√
2i

)
(mod 2m)

2m−3

(
4 0
1 4

)
+M20M−1

2 +M2
2 2m−3

(
0 0
1 0

)
M−2

2 ≡ 2m−1

(
0 0
1 0

)
(mod 2m)
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Thus we showed that

A3(2m) ⊇ Γ(26)/Γ(2m).

Now since the index of Γ(26)/Γ(2m) in Γ/Γ(2m) is |Γ/Γ(26)| = 226, this implies that

A107(2m) = Γ/Γ(2m) (15)

For the case p = 3, the proof goes in the same way. We choose the linear combinations of
the following:

3m−1

(
0 1
0 0

)
+M20M−1

2 +M2
2 0M−2

2 ≡ 3m−1

(
0 1
0 0

)
(mod 3m)

3m−1

(
0 0
1 0

)
+M20M−1

2 +M2
2 0M−2

2 ≡ 3m−1

(
0 0
1 0

)
(mod 3m)

3m−1

(
1 0
0 −1

)
+M20M−1

2 +M2
2 0M−2

2 ≡ 3m−1

(
1 0
0 −1

)
(mod 3m)

3m−1

(
0 1
−1 0

)
+M23m−1

(
0 1
0 0

)
M−1

2 +M2
2 0M−2

2 ≡ 3m−1

(
0 −

√
2i

−
√

2i 0

)
(mod 3m)

3m−1

(
0 1
0 0

)
+M23m−1

(
0 0
1 0

)
M−1

2 +M2
2 0M−2

2 ≡ 3m−1

(√
2i 0

0 −
√

2i

)
(mod 3m)

3m−1

(
−1 1
1 1

)
+M20M−1

2 +M2
2 3m−1

(
0 0
1 0

)
M−2

2 ≡ 3m−1

( √
2i

−
√

2i −
√

2i

)
(mod 3m)

The constant 107 also works in this case. �

Now we are able to prove Proposition 2.2.

Proof of Proposition 2.2. First we embed Γ/Γ(d) into
∏

p
mi
i ||d

Γ/Γ(pm). For any x ∈
∏

p
mi
i ||

Γ/Γ(pm),

from Lemma 2.3 and Lemma 2.4, we can write

x ≡
107∏
j=1

γ
(i)
j,C3

.γ
(i)
j,C1

.γ
(i)
j,C

3
′ (p

mi
i )

for each i, where γ
(i)
j,C3
∈ ΓC3 , γ

(i)
j,C1
∈ ΓC1 , γ

(i)
j,C

3
′ ∈ ΓC

3
′ . Since ΓC3 is a congruence subgroup

and ΓC1 ,ΓC3
′ are conjugate to ΓC1 , we can find γ1, γ2, γ3 such that

γ1 ≡ γij,C3
(mod pmii )

γ2 ≡ γij,C1
(mod pmii )

γ3 ≡ γij,C
3
′ (mod pmii )

for each i. So x = γ1γ2γ3 ∈ Γ/Γ(d). So we have∏
pm||d

Γ/Γ(pm) = Γ/Γ(d)

�

From the above proposition, it follows directly that



12 XIN ZHANG

Lemma 2.5.
(1) If q=

∏
i p

mi
i , then Γ/Γ(q) ∼=

∏
i Γ/Γ(pmii ),

(2) If (q, 6) = 1, then Γ/Γ(q) = SL(2, (Z[
√

2i]/(q))).
(3) If l ≥ 3, then the kernel of Γ/Γ(2l) −→ Γ/Γ(8) is the full of the kernel of SL(2,Z[

√
2i]/(2l)) −→

SL(2,Z[
√

2i]/(8)); If l ≥ 1, then the kernel of Γ/Γ(3l) −→ Γ/Γ(3) is the full of the kernel
of SL(2,Z[

√
2i]/(3l)) −→ SL(2,Z[

√
2i]/(3)).

Since ρ : SL(2,Z[
√

2i]/(pmii )) −→ SOQ(Z/pmii Z) is surjective for each i, the above theorem
also holds for A. We state it here:

Lemma 2.6.
(1) If q=

∏
i p

ni
i , then A/A(q) ∼=

∏
iA/A(pnii ),

(2) If (q,6)=1, then A/A(q) = SOQ(Z/qZ).
(3) If l ≥ 3, then the kernel of A/A(2l) −→ A/A(8) is the full of the kernel of SOQ(Z/2lZ) −→
SOQ(Z/8Z); If l ≥ 1, then the kernel of A/A(3l) −→ A/A(3) is the full of the kernel of
SOQ(Z/3lZ) −→ SOQ(Z/3Z).

Now we can study the local obstruction of P . We let V be the set of vectors Γ · r and Vd
be the reduction of V (mod d). We define Cpm as follows:

• if p ≥ 3,
Cpm = {v ∈ (Z/pmZ)4|Q(v) ≡ 0(mod pm)}

• if p=2,

C2m = {v ∈ (Z/2mZ)4|Q(v) ≡ 0(mod 2m),∃w ≡ v(2m), Q(w) ≡ 0(mod 2m+1)}
Let

πpm : Cpm+1 −→ Cpm

be the canonical projection. We have following lemmata:

Lemma 2.7. If p ≥ 5, then
Vpm = Cpm

Proof. This follows from Lemma 2.6, and the fact that SOQ(Z/pmZ) acts transitively on
Cpm . �

When p = 2, 3, the argument in Lemma 2.7 does not work because Γ reduced at these
local places is not the full group of SL2. But in each case the lifting will saturate for some
finite m, as shown in Lemma 2.8 and 2.9. In the case p = 3, Γ(Z[

√
2i]/(3m)) is actually big

enough to make V3m = C3m :

Lemma 2.8. If p = 3, then
V3m = C3m .

Proof. Using a program, we can check that |V3| = |C3| = 27, and moreover, there exist
T1, . . . , T27 ∈ A ∩ SOQ(Z)(3) such that all the solutions of Q(v) ≡ 0(mod 9) lying above r
is given by:

T1(r) = r+(T1 − I)r (mod 3)

...

T27(r) = r+(T27 − I)r (mod 3).
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Then for any m ≥ 0 the liftings from V3m to V3m+1 are given by

T 3m

1 (r) = r+(T1 − I)3mr (mod 3m+1)

...

T 3m

27 (r) = r+(T27 − I)3mr (mod 3m+1)

We find that |V3m | = |C3m|. �

Lemma 2.9. If p = 2, then for m ≥ 3,

π−1
2m+1(V2m) = V2m+1

Proof. We prove this by effective lifting. This argument is due to Fuchs [7]. For n ≥ 3, let

W (m) = (S1′23.S1′2′3)2m−3
, X(m) = (S12′3.S12′3′ )

2m−3
, Y (m) = (S123′ .S1′2′3)2m−4

. Then

W (n) =


1 0 0 2m−1

2m−1 1 + 2m−1 2m−1 2m−1

0 0 1 0
0 2m−1 0 1 + 2m−1

 ,

X(m) =


1 0 0 0
0 1 0 0

2m−1 2m−1 1 + 2m−1 2m−1

0 0 2m−1 1 + 2m−1

 ,

Y (m) =


1− 2m−2 −2m−2 2m−2 −2m−2

−2m−2 1− 2m−2 2m−2 −2m−2

2m−2 −2m−2 1 + 2m−2 −2m−2

−2m−2 −2m−2 2m−2 1 + 2m−2

 .

Then for example if r ≡ 〈3, 2, 2, 3〉(mod 4), then

Ir ≡ r + 2m−1〈0, 0, 0, 0〉(mod 2m)

W (m)r ≡ r + 2m−1〈1, 0, 0, 1〉(mod 2m)

X(m)r ≡ r + 2m−1〈0, 0, 0, 1〉(mod 2m)

Y (m)r ≡ r + 2m−1〈1, 1, 1, 0〉(mod 2m)

W (m)X(m)r ≡ r + 2m−1〈1, 0, 0, 0〉(mod 2m)

W (m)Y (m)Ir ≡ r + 2m−1〈0, 1, 1, 1〉(mod 2m)

X(m)Y (m)r ≡ r + 2m−1〈1, 1, 1, 1〉(mod 2m)

W (m)X(m)Y (m)r ≡ r + 2m−1〈0, 1, 1, 0〉(mod 2m)

�

Collecting the result from Lemma 2.7 to Lemma 2.9, we obtain the following proposition
which describes the local structure of V .

Theorem 2.10.
(1)Vq ∼=

∏
i Vpnii ,

(2)π−1
pm+1(Vpm) = Vpm+1 for p ≥ 3 and m ≥ 0,

(3)π−1
2m+1(V2m) = V2m+1 for p = 2 and m ≥ 3.
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Lemma 1.2, thus Theorem 1.1 then follow directly from Theorem 2.10 because the first
three components of V are curvatures.

Now we prove Theorem 1.5. Bourgain, Gamburd and Sarnak [3] established an equivalence
between a geometric spectral gap and a combinatorial spectral gap for a finitely generated
Fuchsian group F . Let S be a finite symmetric (S = S−1) generating set of F . For each q,
we have a Cayley graph of F/F (q) over S. There’s a Markov operator (which is a discrete
version of Laplacian) on the functions of this Cayley graph. A Combinatorial spectral gap
is then a uniform positive lower bound of the distance between the biggest two eigenvalues
λ
′
0(q) = 1 and λ

′
1(F (q), S) of this operator. Later this equivalence is generalized by Kim

[13] to Kleinian groups, which applies to our case Γ. From the celebrated Selberg’s 3
16

theorem we know there are geometric spectral gaps for ΓC3 ,ΓC1 ,ΓC3
′ . It then follows that

the combinatorial gaps exist for these groups from [2]. Now we apply Varjü’s lemma in the
Appendix of [4]:

Lemma 2.11 (Varjü). Let G be a finite group and S ⊂ G a finite symmetric generating set.
Let G1, G2, ..., Gk be subgroups of G such that for every g ∈ G there are g1 ∈ G1, . . . , gk ∈ Gk

such that g = g1 . . . gk. Then

1− λ′1(G,S) ≥ min
1≤i≤k

{
|S ∩Gi|
|S|

.
1− λ′1(Gi, S ∩Gi)

2k2

}
In our case G is Γ(mod q), Gi’s are ΓC3 ,ΓC1 or ΓC

3
′ (mod q), in light of Proposition 2.2.

And we let S to be the union of M1,M2,M3,M4,M5,M6,M
−1
7 M3 and their inverses. Clearly

Lemma 2.11 provides a spectral gap for Γ. This implies a geometric spectral gap for Γ again
by [3].

3. Circle Method

In this chapter we are proving Theorem 1.4 via the Hardy-Littlewood circle method. In
§3.1 we set up the ensemble for the circle method. In §3.2 we do major arc analysis, where
we crucially use the spectral gap property of Γ for several counts. From §3.3 to §3.5 we do
minor arc analysis, and several Kloosterman-type sums naturally appear here. §3.6 gathers
all the previous results and finishes the proof of Theorem 1.4.

3.1. Setup of the circle method. Recall that ΓC3 is a congruence subgroup{(
a b
c d

)
∈ SL(2,Z)|a ≡ d ≡ 1(mod 2), b ≡ c ≡ 0 or 2(mod 4)

}
.

Therefore, for any x, y ∈ Z with (x, 2y) = 1, we can find an element ξx,y of the form(
x 2y
∗ ∗

)
∈ ΓC3 . Under the spin homomorphism ρ, ξx,y will be mapped to

x2 − y2 −1 + x2 + y2 2xy −2xy + 2y2

0 1 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .

Hence we have the following theorem:
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Theorem 3.1. Let x, y ∈ Z with (x, 2y) = 1, and take any element γ ∈ A with the corre-
sponding quadruple

vγ = γ(r) = 〈aγ, bγ, cγ, dγ〉.
Then the number

〈e1, ξx,y.γr〉 = Aγx
2 + 2Bγxy + Cγy

2 − bγ (16)

is the curvature of some circle in P, where

Aγ := aγ + bγ

Bγ := cγ − dγ
Cγ := −aγ + bγ + 2dγ (17)

We can view (16) as a shifted quadratic form f(x, y) determined by γ with variables x, y.
We define

f(x, 2y) = 〈e1, ξx,y.γ(r)〉
f̃(x, 2y) = Aγx

2 + 2Bγxy + Cγy
2

Then f = f̃− bγ, and the discriminant of f̃ is −8b2
γ.

Now we set up our ensemble for the circle method. Let N be the main growing parameter.
Write N = TX2, where T = N

1
200 , a small power of N , and X = N

199
400 . We define our

ensemble to be a subset of A (with multiplicity) of Frobenius norm � N . The ensemble is a
product of a subset F of norm T , and a subset X of norm X2. We further write T = T1T2,
where T2 = T C1 and C is a large number which is determined in Lemma 3.11 . We define F
in the following way:

F = FT =

γ = γ1γ2 :

γ1, γ2 ∈ A
T1 < ||γ1|| < 2T1

T1 < ||γ2|| < 2T2

< e2, γ1γ2r >
T

100


Recall that the Hausdorff dimension of the circle packing δ is strictly greater than 1. The

size of F is � T δ, which can be seen from [15]. The last condition in the definition of F
implies that bα � T , which is crucial in our minor arc analysis later. The subset of norm X2

is the image of some elements of the form

(
x 2y
∗ ∗

)
in ΓC3 , with x, y � X, under the map ρ.

For technical reasons we need to smooth the variables x and y. We fix a smooth, nonneg-
ative function ψ which is supported in [1, 2] and

∫
R ψ(x)dx = 1. Our main goal is to study

the following representation number

RN(n) :=
∑
f∈FT

∑
x,y∈Z(x,2y)=1

ψ
( x
X

)
ψ

(
2y

X

)
1{n=f(x,2y)} (18)

via its Fourier transform:

R̂N(θ) :=
∑
f∈FT

∑
x,y∈Z(x,2y)=1

ψ
( x
X

)
ψ

(
2y

X

)
e(θf(x, 2y)) (19)
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RN and R̂N is related by

RN(n) =

∫ 1

0

R̂N(θ)e(−nθ)dθ.

Therefore, RN(n) 6= 0 implies n is represented. Since δ > 1, one expects roughly that
each admissible n is represented by T δ−1 times. One important thing for circle method here
is that T δ−1 is a positive power of N , so we have enough solutions to play with.

Another technicality is that we replace the condition (x, 2y) = 1 by the Möbius orthogonal
relation: ∑

d|n

µ(n) =

{
1 if n = 1,

0 if n > 1.

We introduce another parameter U which is a small power of N . It is determined in (56).
We then define the corresponding representation function

RU
N(n) :=

∑
f∈FT

∑
x,y∈Z

∑
u|(x,2y)
u<U

µ(u)ψ
( x
X

)
ψ

(
2y

X

)
1{n=f(x,2y)}

and its Fourier transform:

R̂U
N(θ) :=

∑
f∈FT

∑
x,y∈Z

∑
u|(x,2y)
u<U

µ(u)ψ
( x
X

)
ψ

(
2y

X

)
e(θf(x, 2y))

The `1 norm of RN is � T δX2. We first show that the difference between RN and RU
N is

small in `1, compared to T δX2:

Lemma 3.2. ∑
n<N

∣∣RN(n)−RU
N(n)

∣∣�ε
T δX2+ε

U
.

Proof.

∑
n<N

|RN(n)−RU
N(n)| =

∑
n<N

∣∣∣∣∣∣∣∣
∑
f∈FT

∑
(x,2y)=1

∑
u|(x,2y)
u≥U

µ(u)ψ(
x

X
)ψ(

2y

X
)1{n=f(x,2y)}

∣∣∣∣∣∣∣∣
≤
∑
f∈F

∑
x,y∈Z

ψ(
x

X
)ψ(

2y

X
)

∣∣∣∣∣∣∣∣
∑

u|(x,2y)
u≥U

µ(u)

∣∣∣∣∣∣∣∣
�
∑
f∈F

∑
x�X

∑
u≥U
u|x

∑
y�X

2y≡0(u)

1� T δX2+ε

U

�

Now we decompose [0,1] into “major” and “minor’ arcs according to the standard Diophan-
tine approximation of real numbers by rationals. Let M = TX be the parameter controlling
the depth of the approximation. Write α = a

q
+ β. We introduce two parameters Q0, K0
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such that the major arcs corresponds to q ≤ Q0, β ≤ K0

N
. Both Q0 and K0 are small powers

of N , and they are determined in (56).

Next we introduce the “hat” function

t := min(1 + x, 1− x)+

whose Fourier transform is

t̂(y) =

(
sin(πy)

πy

)2

.

From t, we construct a spike function T which captures the major arcs:

T(θ) :=
∑
q≤Q0

∑
(r,q)=1

∑
m∈Z

t

(
N

K0

(
θ +m− a

q

))
.

The “main” term is then defined to be:

MN(n) :=

∫ 1

0

T(θ)R̂N(θ)e(−nθ)dθ (20)

and the “error” term

EN(n) :=

∫ 1

0

(1− T(θ))R̂N(θ)e(−nθ)dθ. (21)

We define MU
N(n) and EUN (n) in a similar way.

Now we explain the general strategy to prove the Theorem 1.4.

RN = MN + EN
| | |
RU
N = MU

N + EUN
(22)

STRATEGY :

(1) The difference between RN and RU
N is small in `1. We have shown this in Lemma

3.2.
(2) MN is large for each n admissible in the range (N

2
, N) (See Theorem 3.5), and the

difference ofMN andMU
N is small in `2 (See Lemma 3.6). This will be done in §3.2.

(3) Step 2 will imply that the difference between EUN and EN is also small. §3.3 to §3.5
will show that the EUN is small in l2 (See Theorem 3.7), which implies that EN is
small in `1. This would greatly restrain the size of the set of admissible n’s where
RN(n) = 0 in (N

2
, N), because each term would contribute large to EN .
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3.2. Major Arc Analysis. From (20),

MN(n) =

∫ 1

0

∑
q<Q0

∑
r(q)

′∑
m∈Z

t

(
N

K0

(
θ +m− r

q

))
R̂N(θ)e(−nθ)dθ

=

∫ ∞
−∞

∑
q<Q0

∑
r(q)

′
t

(
N

K0

β

)
R̂N

(
β +

r

q

)
e

(
−n
(
β +

r

q

))
dβ

=
∑
x,y

(x,2y)=1

ψ
( x
X

)
ψ

(
2y

X

) ∑
q<Q0

∑
r(q)

′∑
f∈F

e

(
r

q
(f(x, 2y)− n)

)∫ ∞
−∞

t

(
N

K0

β

)
e(β(f(x, 2y)− n)dβ

(23)

Now we cite Lemma 5.3 from [4] to deal with the F sum in (23).

Lemma 3.3 (Bourgain, Kontorovich). Let 1 < K < T
1
10

2 , fix |β| < K
N

, and fix x, y � X.
Then for any γ0 ∈ Γ, any q ≥ 1, we have

∑
γ∈F∩γ0Γ(q)

e(βfγ(x, 2y)) =
1

Γ : Γ(q)

∑
f∈F

e(βfγ(x, 2y)) +O(TΘK),

where Θ < δ depends only on the spectral gap for Γ, and the implied constant does not depend
on q, γ0, x or y.

Returning to (23), we can decompose the set F as cosets of Γ(q). Applying Lemma 3.3
and setting K = K0, we have

MN(n) =
∑
x,y∈Z

(x,2y)=1

ψ
( x
X

)
ψ

(
2y

X

) ∑
q<Q0

∑
r(q)

′ ∑
γ̄∈Γ/Γ(q)

e

(
r

q
(fγ̄(x, 2y)− n)

)

×
∑
γ∈F
γ≡γ̄

∫ ∞
−∞

t

(
N

K0

β

)
e(β(fγ(x, 2y)− n))dβ

=
∑
x,y∈Z

(x,2y)=1

ψ
( x
X

)
ψ

(
2y

X

) ∑
q<Q0

∑
r(q)

′ ∑
γ̄∈Γ/Γ(q)

e

(
r

q
(fγ̄(x, 2y)− n)

)

×

(
1

[Γ : Γ(q)]

∑
γ∈F

∫ ∞
−∞

t

(
N

K0

β

)
e(β(fγ(x, 2y)− n))dβ +O

(
TΘK2

0

N

))

=
∑
r(q)

′
ψ
( x
X

)
ψ

(
2y

X

)
SQ0(n)M(n) +O

(
TΘX2K2

0Q
8
0

N

)

=
∑
r(q)

′
ψ
( x
X

)
ψ

(
2y

X

)
SQ0(n)M(n) +O

(
N−η

)
(24)
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where η1 > 0, as can be seen from (56), and

SQ0(n) = SQ0;x,y(n) : =
∑
q<Q0

∑
(r,q)=1

1

[Γ : Γ(q)]

∑
γ̄∈Γ/Γ(q)

e

(
r

q
(fγ̄(x, 2y))− n

)
(25)

=
∑
q<Q0

1

[Γ/Γ(q)]

∑
γ̄∈Γ/Γ(q)

cq(fγ̄(x, 2y)− n) (26)

and

M(n) := Mx,y(n) :=
∑
γ∈F

∫ ∞
−∞

t

(
N

K0

β

)
e(β(fγ(x, 2y)− n))dβ

=
K0

N

∑
γ∈F

t̂

(
K0

N
(f(x, 2y)− n)

)
(27)

The function cq(n) in (25) is the classical Ramanujan’s sum, defined by

cq(n) =
∑
a(q)

′
e

(
an

q

)
,

cq(n) is multiplicative with respect to q, and

cpk(n) =


0 if pm||n,m ≤ k − 2,

−pk−1 if pk−1||n,
pk−1(p− 1) if pk|n.

Now M(n)� T δ

N
for N

2
< n < N , which can be seen from the following lemma by Lemma

5.4 in [4]. We record it here:

Lemma 3.4 (Bourgain, Kontorovich). Fix N/2 < n < N, 1 < K ≤ T
1
10

2 , and x, y � X.
Then ∑

γ∈F

1{|fγ(x,2y)−n|<N
K
} �

T δ

K
+ TΘ,

where Θ < δ depends only on the spectral gap for Γ. The implied constant is independent of
x, y and n.

Now we are at a position to analyze the non-Archimedean part SQ0 . We push SQ0(n) to
infinity, and define

S(n) :=
∞∑
q=1

1

[Γ : Γ(q)]

∑
γ̄∈Γ/Γ(q)

cq(fγ̄(x, 2y)− n)

=
∞∑
q=1

∑
a∈Z/qZ

τq(a)cq(a− n) :=
∞∑
q=1

Bq(n),

where

τq(a) =
#{〈u, v, w〉(mod q)|〈a, u, v, w〉 ∈ P}

#{〈x, u, v, w〉(mod q)|〈x, u, v, w〉 ∈ P}
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From Theorem 2.10 we know that τq(n) is multiplicative in the q variable, and so is Bq(n).
Therefore, we can formaly write

S(n) =
∏
p

(1 +Bp(n) +Bp2(n) + . . .)

For p ≥ 3, by Theorem 2.10, we can show that

Bp(n) =


−1−p(−2

p
)

p2+(1+(−2
p

))p+1
ifp|n,

p(−2
p

)+1

p3+p(p−1)(−2
p

)−1
ifp - n,

and Bpk = 0 for k ≥ 2. For p = 2, we have B2m = 0 for m ≥ 4 and

1 +B2(n) +B4(n) +B8(n) =

{
8 if n ≡ κ1(mod 8)

0 otherwise.

Thus we see that SQ0 is a non-negative function which is non-zero if and only if n ≡
κ1(mod 8), which matches exactly the local obstruction described in Theorem 2.10. For
such admissible n’s, SQ0 satisfies N−ε �ε SQ0(n)�ε N

ε.

To analyze RU
N we need to extend the definition of Sx,y(n) restricted to (x, 2y) = 1 to

all pair of integers x, y. If (x, 2y) = u > 1, the same calculation shows that SQ0;x,y(n) has
the same local factor for p 6= 2, and B2m = 0 for m ≥ 4. Therefore, Sx,y(n) �ε N

ε for any
x, y ∈ Z.

The difference between S and SQ0 is small. In fact, we have

|S(n)−SQ0;x,y(n)| ≤
∑
q≥Q0

|Bq(n)| ≤
∑
q1:n

|Bq1(n)|
∑

(q2,q1)=1
q1q2≥Q0

|Bq2(n)| (28)

Here we write q = q1q2, where q1 : n means that q1 is the product of all primes dividing n.
We also know that Bq(n) as a function of q is supported on (almost) square-free numbers
(as can be see by the previous paragraphs), we have

(28)�
∑
q1:n

1

q1

q1

Q0

� 2w(n)

Q0

where w(n) denotes the number of primes dividing n. Therefore, we conclude that if n is
admissible, then N−ε � SQ0(n)�ε N

ε. In summary, we have

Theorem 3.5. For N
2
< n < N , there exists a function SQ0(n) such that if n is admissible,

then

MN(n)� SQ0(n)T δ−1,

where

N−ε �ε SQ0(n)�ε N
ε.

Next we show that the difference of MN and MU
N is small in `1.
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Lemma 3.6. ∑
N
2
<n<N

|MN(n)−MU
N(n)| �ε

N εX2T δ

U
+
TΘX2K2

0Q
2
0

U
,

where Θ is the same as in Lemma 3.3.

Proof. Going in the same way as (23) to unfold MU
N(n), we have

MN(n)−MU
N(n) =

∑
u≥U
u odd

µ(u)
∑
x,y∈Z

ψ
(xu
X

)
ψ

(
2yu

X

) ∑
q<Q0

∑
r(q)

′ ∑
γ̄∈Γ/Γ(q)

e

(
r

q
(fγ̄(xu, 2yu)− n)

)

×
∑
γ∈F

γ≡γ̄(mod Γ(q))

∫ ∞
−∞

t

(
N

K0

θ

)
e(θ(fγ(xu, 2yu)− n))dθ

+
∑
u≥U
u even

µ(u)
∑
x,y∈Z

ψ
(xu
X

)
ψ
(yu
X

) ∑
q<Q0

∑
r(q)

′ ∑
γ̄∈Γ/Γ(q)

e

(
r

q
(fγ̄(xu, yu)− n)

)

×
∑
γ∈F

γ≡γ̄(mod Γ(q))

∫ ∞
−∞

t

(
N

K0

θ

)
e(θ(fγ(xu, yu)− n))dθ

=
∑
u≥U
u odd

µ(u)
∑
x,y∈Z

ψ
(xu
X

)
ψ

(
2yu

X

)
SQ0,(xu,2yu)(n)×

∑
γ∈F

K0

N
t̂

(
K0

N
(fγ(xu, 2yu)− n)

)

+
∑
u≥U
u even

µ(u)
∑
x,y∈Z

ψ
(xu
X

)
ψ
(yu
X

)
SQ0,(xu,yu)(n)×

∑
γ∈F

K0

N
t̂

(
K0

N
(fγ(xu, yu)− n)

)

+O

(
TΘX2K2

0Q
2
0

NU

)
Therefore,∑

N
2
<n<N

|MN(n)−MU
N(n)|

�
∑
u>U
u odd

∑
x,y∈Z

ψ
(xu
X

)
ψ

(
2yu

X

)
K0

N

∑
f∈F

∑
N
2
<n<N

SQ0(n)̂t

(
K0

N
(f(xu, 2yu)− n)

)

+
∑
u>U
u even

∑
x,y∈Z

ψ
(xu
X

)
ψ
(yu
X

) K0

N

∑
f∈F

∑
N
2
<n<N

SQ0(n)̂t

(
K0

N
(f(xu, yu)− n)

)
+
TΘX2K2

0Q
2
0

U

�ε
X2T δN ε

U
+
TΘX2K2

0Q
2
0

U
�

In light of (56), we have∑
N
2
<n<N

|MN(n)−MU
N(n)| �η T

δX2N−η
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3.3. Minor Arc Analysis I. The rest few sections of the paper is dedicated to proving

Theorem 3.7, which shows that (1−T(θ))R̂U
N is small in L2. By Plancherel formula this will

imply that EUN is small in `2, fulfilling Step 3 of our strategy.

Theorem 3.7. ∫ 1

0

∣∣(1− T(θ))RU
N(θ)

∣∣2 dθ � NT 2(δ−1)N−η

We divide the integral into three parts.

I1 =
∑
q<Q0

∑
r(q)

′
∫ r

q
+ 1
qM

r
q
− 1
qM

|(1− T(θ))R̂U
N(θ)|2dθ (29)

I2 =
∑

Q0≤q<X

∑
r(q)

′
∫ r

q
+ 1
qM

r
q
− 1
qM

|(1− T(θ))R̂U
N(θ)|2dθ (30)

I3 =
∑

X≤Q≤M

∑
r(q)

′
∫ r

q
+ 1
qM

r
q
− 1
qM

|(1− T(θ))R̂U
N(θ)|2dθ (31)

corresponding to different ranges of q. We will show that I1, I2, I3 are bounded by the same
bound as in Theorem 3.7, which immediately implies Theorem 3.7. This section is to deal
with I1, and the next two sections deal with I2, I3 respectively.

First we re-order the sum in R̂U
N according to the u variable:

R̂U
N(θ) =

∑
x,y∈Z

∑
f∈F

∑
u<U

µ(u)ψ
( x
X

)
ψ

(
2y

X

)
e(θf(x, 2y))

=
∑
u odd

µ(u)
∑
f∈F

∑
x,y∈Z

ψ
(xu
X

)
ψ

(
2yu

X

)
e(θf(xu, 2yu))

+
∑
u even

µ(u)
∑
f∈F

∑
x,y∈Z

ψ
(xu
X

)
ψ
(yu
X

)
e(θf(xu, yu))

:=
∑
u<U

µ(u)
∑
f∈F

Ru,f(θ) (32)

For simplicity we restrict our attention to u even. The same argument is applied to u odd.
We write u2

q
= u0

q0
in irreducible form, then we have

Ru,f

(
r

q
+ β

)
=
∑
x,y∈Z

µ(u)ψ
(xu
X

)
ψ
(yu
X

)
e

(
f(xu, yu)

(
r

q
+ β

))
= e

(
−bf

(
r

q
+ β

)) ∑
x0,y0(q0)

e

(
u0

q0

f̃(x0, y0)r

)

×

 ∑
x≡x0(q0),y≡y0(q0)

ψ
(xu
X

)
ψ
(yu
X

)
e(̃f(xu, yu)β)

 (33)
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Now applying Poisson summation to the bracket, we have

[·] =
∑
ξ,ζ∈Z

∫ ∞
−∞

∫ ∞
−∞

ψ

(
(xq0 + x0)u

X

)
ψ

(
(yq0 + y0)u

X

)
e
(
β f̃((x0 + xq0)u, (y0 + yq0)u)− xξ − yζ

)
dxdy

=
X2

u2q2
0

∑
ξ,ζ∈Z

e

(
x0ξ

q0

+
y0ζ

q0

)∫ ∞
−∞

∫ ∞
−∞

ψ(x)ψ(y)e

(
f̃(x, y)X2β − Xξ

uq0

x− Xζ

uq0

y

)
dxdy

(34)

Putting (34) back to (32), we have

Ru,f

(
r

q
+ β

)
=
X2

u2
e

(
−bf

(
r

q
+ β

)) ∑
ξ,ζ∈Z

Sf(q0, u0r, ξ, ζ)Jf(β;uq0, ξ, ζ),

where

Sf(q0, u0r, ξ, ζ) :=
1

q2
0

∑
x0,y0(q0)

e

(
u0r

q0

f̃(x0, y0) +
x0ξ

q0

+
y0ζ

q0

)
,

and

Jf(β;uq0, ξ, ζ) :=

∫ ∞
−∞

∫ ∞
−∞

ψ(x)ψ(y)e

(
f̃(x, y)X2β − Xξ

uq0

x− Xζ

uq0

y

)
dxdy.

We can compute Sf explicitly. For simplicity we assume q0 is odd, and Af is invertible in
Z/q0Z. We record a standard fact of exponential sum:∑

a∈Z/qZ

eq(x
2) = iε(q)q

1
2 ,

where ε(q) = 0 if q ≡ 1(4) and ε(q) = 1 if q ≡ 3(4). From this, one can get

∑
r∈Z/qZ

eq(rx
2) =

(
r

q

)
iε(q)q

1
2 (35)

if (r, q) = 1. Now complete square of Sf and apply (35) to Sf, we get

Sf(q0, u0r, ξ, ζ) =
1

q2
0

∑
x0,y0(q0)

eq0

(
u0rf̃(x0, y0) + x0ξ + y0ζ

)
=

1

q2
0

∑
x0,y0(q0)

e
(
u0rAf

(
x0 +BfĀfy0

)2
+ ξ

(
x0 +BfĀfy0

)
+ 2u0rĀfb

2
f y

2
0 +

(
ζ − ξBfĀf

)
y0

)
=

1

q2
0

q
1
2
0 i
ε(q0)

(
u0rAf

q0

)
eq0
(
−4u0rAfξ

2
) ∑
y0(q0)

eq0
(
2u0rĀfb

2
f y

2
0 +

(
ζ − ξBfĀf

)
y0

)
(36)
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To deal with the sum in the above expression, we write
b2f
q0

= b1
q1

where (b1, q1) = 1. Then

after a linear change of variables and completing square we obtain

Sf(q0, u0r, ξ, ζ) =
iε(q0)+ε(q1)

q
1
2
0 q

1
2
1

1{Afζ≡Bfξ(
q0
q1

)}

(
u0rAf

q0

)(
2u0rbfĀf

q1

)

×eq0
(
−4u0rAfξ

2
)
eq1

(
−8u0rb1Af

(
q1(Afζ −Bfξ)

q0

)2
)

(37)

From (37) we see trivially that |Sf(q0, u0r, ξ, ζ)| ≤ q
− 1

2
0 .

Now we deal with Jf. For this we need standard results from non-stationary phase and
stationary phase, and we record them here.

Non-stationary phase: Let φ be a smooth compactly supported function on (−∞,∞) and f
be a function which satisfies |f ′(x)| > A > 0 in the support of φ and A ≥ |f (2)(x)|, ..., f (n)(x)
in the support of φ. Then ∫ ∞

−∞
φ(x)e(f(x))dx�φ,N A−N

Proof. By partial integration,∫ ∞
−∞

φ(x)e(f(x)) =

∫ ∞
−∞

φ(x)

f ′(x)
de(f(x))

= −
∫ ∞
−∞

(
φ

f ′

)′
(x)e(f(x))dx = −

∫ ∞
−∞

φ
′
(x)

f ′(x)
+
φ(x)f (2)(x)

(f ′(x))2
dx

From here, we see already that∫ ∞
−∞

φ(x)e(f(x))dx�φ,N A−1

Iterating partial integration N times we can get the A−N bound. �

Stationary phase: Let f be a quadratic polynomial of two variables x and y with discrim-
inant −D, where D > 0. Let φ(x, y) be a smooth compactly supported function on R2,
then ∫ ∞

−∞

∫ ∞
−∞

φ(x, y)e(f(x, y))dxdy �φ
1√
D
.

Proof. After using an orthonormal matrix L to change variables we can change the above
integral into the from ∫ ∞

−∞

∫ ∞
−∞

φ(L(x, y))e

(
−x2 − D

4
y2

)
dxdy

Using Plancherel formula,∫ ∞
−∞

∫ ∞
−∞

φ(L(x, y))e

(
−x2 − D

4
y2

)
dxdy =

1

i
√
D

∫ ∞
−∞

∫ ∞
−∞

φ̂ ◦ L(u, v)e

(
u2

4
+
v2

D

)
dudv
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We caution the reader that e(−x2 − D
4
y2) is not in L2, the above formula is obtained in

the following way: first approximate e2πi(−x2−D
4

)y2
by e(−ε+2πi)(−x2−D

r
y2), where we can apply

Plancherel formula, then let ε→ 0 and pass the limit. Therefore,∫ ∞
−∞

∫ ∞
−∞

φ(x, y)e(f(x, y))dxdy ≤ 1√
D
||φ̂ ◦ L||1 ≤

1√
D
||φ||1 (38)

�

If either ξ � U ≥ TXβuq0 or ζ � U ≥ TXβuq0, then the non-stationary phase condition
is satisfied, we have Jf(β;uq0, ξ, ζ) � (uq0

Xξ
)N for any N , so these terms are negligible. Now

we deal with the case ξ, ζ � U . Recall that the discriminant of f is −8b2
f , by the stationary

phase, we have

Jf(β;uq0, ξ, ζ)� min

{
1,

1

TX2|β|

}
(39)

With this, one gets

Ru,f(
r

q
+ β)� X2

u2

∑
ξ,ζ�u

q
− 1

2
0

1

TX2|β|
� u

q
1
2T |β|

using the fact that u2q0 ≥ q. Therefore, we have

RU
N

(
r

q
+ β

)
� T δ

∑
u<U

u

q
1
2T |β|

� T δ−1U2

q
1
2 |β|

(40)

Now we are able to bound I1

Lemma 3.8.

I1 � NT 2(δ−1)N−η

Proof. We divide the integral into three parts:

I1 =
∑
q<Q0

∑
r(q)

′
∫ r

q
+ 1
qM

r
q
− 1
qM

∣∣∣(1− T(θ))R̂U
N(θ)

∣∣∣2 dθ
=
∑
q<Q0

′∑
r(q)

∫ K0
N

−K0
N

| · |2dβ +

∫
K0
N

1
qM | · |2dβ +

∫ −K0
N

− 1
qM

| · |2dβ

For the first summand, we insert |1 − T( r
q

+ β)|2 = N2β2

K2
0

and bound R̂U
N by (40). For the

second and the third summands, we trivially bound |1−T(θ)|2 by 1 and R̂U
N by (40). Then

we get

I1 �
NQ0T

2(δ−1)U4

K0

�η T
2δ−1X2N−η, (41)

which is a power saving. �
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3.4. Minor Arc Analysis II. In this section we deal with I2. We divide the q-sum 2-
adically:

IQ :=
∑

Q≤q<2Q

∑
r(q)

′
∫ r

q
+ 1
qM

r
q
− 1
qM

∣∣∣R̂U
N(θ)

∣∣∣2 dθ (42)

We will show that for all Q0 ≤ Q < X, IQ has a power saving, in the next section we will show
that IQ has a power saving for the range X ≤ Q ≤M . Clearly these will imply Theorem 3.7.

Recall from (32) that

R̂U
N

(
r

q
+ β

)
=
∑
u<U

∑
f∈F

Ru,f

(
r

q
+ β

)
=
∑
u<U

∑
f∈F

e

(
−bf

(
r

q
+ β

))
X2

u2

∑
ξ,ζ∈Z

Sf(q0, u0r, ξ, ζ)Jf(β;uq0, ξ, ζ) (43)

Apply Cauchy-Schwartz inequality to the u variable, we have∣∣∣∣R̂U
N

(
r

q
+ β

)∣∣∣∣2 ≤X4

∣∣∣∣∣∑
f∈F

∑
ξ,ζ∈Z

e

(
−bf

(
r

q
+ β

))
Sf(q0, u0r, ξ, ζ)Jf(β;uq0, ξ, ζ)

∣∣∣∣∣
2

=X4
∑
f,f′∈F

e

(
−
(
bf − bf′

) r
q

) ∑
ξ,ζ∈Z

∑
ξ′ ,ζ′∈Z

Sf(q0, u0r, ξ, ζ)Sf′ (q0, u0r, ξ
′ , ζ ′)

Jf(β;uq0, ξ, ζ)Jf
′ (β;uq0, ξ

′ , ζ ′)e
(
−(bf − bf′ )β

)
Changing variables θ = r

q
+ β in (42) and putting (44) back to (42), we get

IQ � X4
∑
f,f′∈F

∑
ξ,ζ∈Z

∑
ξ′ ,ζ′∈Z

∑
Q≤q<2Q

∑
r(q)

′
e

(
−
(
bf − bf′

) r
q

)
Sf(q0, u0r, ξ, ζ)Sf′ (q0, u0r, ξ

′ , ζ ′)


×
∫ 1

qM

− 1
qM

Jf(β, uq0, ξ, ζ)Jf
′ (β;uq0, ξ

′ , ζ ′)e((−bf + bf)β)dβ (44)

We again split IQ into non-Archimedean and Archimedean pieces. For the Archimedean
part, we use (39) to bound J . We have∫ 1

qM

− 1
qM

Jf(β, uq0, ξ, ζ)Jf
′ (β;uq0, ξ

′ , ζ ′)e((−bf + bf)β)dβ �
∫ ∞
−∞

min

{
1,

1

TX2|β|

}2

dβ

�
∫ 1

TX2

− 1
TX2

1dβ +

(∫ − 1
TX2

−∞
+

∫ ∞
1

TX2

)
1

T 2X4β2
dβ � 1

TX2
. (45)

Now we analyze the non-Archimedean part. Again for simplicity we only deal with q0 odd,
and Af, Af

′ invertible in Z/q0Z. We set

S(q, q0, u0, ξ, ζ, f, ξ
′
, ζ
′
, f
′
) =

∑
r(q)

′
e

(
−
(
bf − bf′

) r
q

)
Sf(q0, u0r, ξ, ζ)Sf′ (q0, u0r, ξ

′ , ζ ′) (46)
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Recall that
b2f
q0

= b1
q1

, and similarly we write
b2
f
′

q0
=

b
′
1

q
′
1

. Plug (37) in(46) , then we obtain

S(q, q0, u0, ξ, ζ, f, ξ
′
, ζ
′
, f
′
) = 1 Afζ≡Bfξ(

q0
q1

)

A
f
′ ζ
′≡B

f
′ ξ
′
(
q0

q
′
1

)

× iε(q1)−ε(q′1)

q0q
1
2
1 q
′
1

1
2

(
Af

q0

)(
Af
′

q0

)

×
∑
r(q)

′
(

2u0rb1Āf

q1

)(
2u0rb

′
1Āf

′

q
′
1

)
eq((−bf + bf′ )r)eq0

(
−8u0b1Af

q0

q1

(
q1(Afζ −Bfξ)

q0

)2

r̄

)

× eq0

8u0b
′
1Af

′
q0

q
′
1

(
q
′
1(Af

′ζ
′ −Bf

′ξ
′
)

q0

)2

r̄

 eq0

(
−4u0rAfξ

2 + 4u0rAf
′ξ
′2
)

(47)

This is a type of Kloosterman sum. For our use in (47) we only need an elementary 3
4

bound originally due to Kloosterman [14] (compared to the 1
2

bound implied by the Weil
conjecture). We stated it here:

Lemma 3.9. Let S(m,n, q, χ) =
∑′

x(q) eq(mx+ nx̄)χ(x), then we have

S(m,n, q, χ)�ε min {(m, q), (n, q)}
1
4 q

3
4

+ε.

We have an extra multiplicative character χ compared to the original paper by Klooster-
man [14], but his proof is easily modified to suit our case.

Apply Lemma 3.9 to (47), and recall that q1 = q0
(q0,b2f )

, q
′
1 = q0

(q0,b2
f
′ )

, then we obtain

|S(q, q0, u0, ξ, ζ, f, ξ
′
, ζ
′
, f
′
)| �ε

(
bf − bf′ , q

) 1
4

(
q

q0

)2

(q0, b
2
f )

1
2 (q0, bf′

2)
1
2 q−

5
4

+ε. (48)

In the case when bf = bf′ and f(ξ,−ζ) 6= f
′
(ξ
′
,−ζ ′), we prove a better bound for

S(q, q0, u0, ξ, ζ, f, ξ
′
, ζ
′
, f
′
). This will be needed in the next section.

Lemma 3.10. If bf = bf′ , then

|S(q, q0, u0, ξ, ζ, f, ξ
′
, ζ
′
, f
′
)| �ε (q0, b

2
f )q
− 9

8
+ε

(
q

q0

) 17
8 ∣∣∣f(ξ,−ζ)− f

′
(ξ
′
,−ζ ′)

∣∣∣ 1
2

.

Proof. If bf = bf′ , then q1 = q
′
1 = q0

(q0,b2f )
. From (47) we have

|S(q, q0, u0, ξ, ζ, f, ξ
′
, ζ
′
, f
′
)| =

(q0, b
2
f )

q2
0

· q
q0

∣∣∣∣∑
r(q0)

′
(
AfAf

′

q1

)

× eq0

(
−8u0b1Af

q0

q1

(
q1(Afζ −Bfξ)

q0

)2

r̄

)
× eq0

8u0b
′
1Af

′
q0

q
′
1

(
q
′
1(Af

′ζ
′ −Bf

′ξ
′
)

q0

)2

r̄


× eq0(−4u0rAfξ

2 + 4u0rAf
′ξ′2)

∣∣∣∣
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Clearly the term | · | is multiplicative. We apply the Kloostrman 3/4 bound to | · | using the
r̄ coefficient:

|S(q, q0, u0, ξ, ζ, f, ξ
′
, ζ
′
, f
′
)| �ε

(q0, b
2
f )

q2
0

(
q

q0

)
q

3
4

+ε

0

×
∏
pj ||q0

(
pj,−Āfξ

2 − 2b1Af
q0

q1

L2 + Āf
′ξ
′2

+ 2b1Af
′
q0

q1

L
′2
) 1

4

(49)

where L =
q1(Afξ−Bfζ)

q0
and L

′
=

q
′
1(A

f
′ ξ
′−B

f
′ ζ
′
)

q0
. Now we divide the set of all the primes dividing

q0 into two sets P1 and P2, where P1 contains primes p such that

Āfξ
2 + 2b1Af

q0

q1

L2 ≡ Āf
′ξ
′2

+ 2b1Af
′
q0

q1

L
′2

(p[j/2])

and P2 is the complement of P1.

For p ∈ P2, the gcd of pj and −Āfξ
2 − 2b1Af

q0
q1
L2 + Āf

′ξ
′2

+ 2b1Af
′
q0
q1
L
′2

is at most p
j
2 .

Therefore, ∏
p∈P2

(
pj,−Āfξ

2 − 2b1Af
q0

q1

L2 + Āf
′ξ
′2

+ 2b1Af
′
q0

q1

L
′2
)
≤
∏
p∈P2

p
j
2 ≤ q

1
2
0 (50)

For p ∈ P1, we have

Āfξ
2 + 2b1Af

q0

q1

L2 ≡ Āfξ
2 + 2b2

f (Afζ −Bfξ)
2 ≡ 2b2

f f̃(ξ,−ζ)(mod p[ j
2

]). (51)

Similarly,

Āf
′ξ
′2

+ 2b1Af
′
q0

q1

L2 ≡ 2b2
f
′ f̃
′(ξ
′
,−ζ ′)(mod p[ j

2
]) (52)

Since bf = bf′ , we have f(ξ,−ζ) ≡ f
′
(ξ
′
,−ζ ′)(mod p

j
2 ) for every p ∈ P1. Thus we have

∏
p∈P1

(
pj,−Āfξ

2 − 2b1Af
q0

q1

L2 + Āf
′ξ
′2

+ 2b1Af
′
q0

q1

L
′2
)
≤
∏
p∈P1

pj � |f(ξ,−ζ)− f
′
(ξ
′
,−ζ ′)|2

(53)

Plugging (50) and (53) back into (49) we obtain our lemma. �

Now we go back to IQ. Again by non-stationary phase the sum is supported on the terms
ξ, ξ

′
, ζ, ζ

′ � U . Using (48) we have

IQ �ε
N εX4U4

TX2

∑
f,f′∈F

∑
Q≤q≤2Q

(bf − bf′ , q)
1
4

(
q

q0

)2

(q0, b
2
f )

1
2 (q0, b

2
f
′ )

1
2 q−

5
4

�ε
N εX2U8

T

∑
f,f′∈F

∑
Q≤q≤2Q

(bf − bf′ , q)
1
4 (q0, b

2
f )

1
2 (q0, b

2
f
′ )

1
2 q−

5
4 (54)

We further split (54) into two parts according to bf = bf′ or not:

IQ ≤ I(=)
Q + I(6=)

Q .



ON THE LOCAL-GLOBAL PRINCIPLE FOR INTEGRAL APOLLONIAN 3-CIRCLE PACKINGS 29

We first deal with I(=)
Q . Noticing that q

q0
≤ U , we have

I(=)
Q �ε

N εX2U8

T

∑
f∈F

∑
Q≤q≤2Q

(q, b2
f )

q

∑
f
′∈F

b
f
′=bf

1

�ε
N εX2U8

T

∑
f∈F

∑
a|b2f

a
∑

Q≤q≤2Q

1a|q
∑
f
′∈F

b
f
′=bf

1

�ε
N εX2U8

T

∑
f∈F

∑
f
′∈F

b
f
′=bf

1 (55)

For the last sum above, we introduce Lemma 5.2 from [4]:

Lemma 3.11 (Bourgain, Kontorovich). There exists a positive constant C and there exists
some η0 > 0 which only depend on the spectral gap of Γ such that for any 1 ≤ q < N and
any r(mod q),

∑
γ∈F

1〈e1,γr〉≡r(mod q) �
T δ

qη0
.

The implied constant is independent of r.

Now we can finally determine K0, Q0 and U . We set

Q0 = T
δ−Θ
20 , K0 = Q2

0, U = Q
η2
0

100
0 . (56)

Apply Lemma 3.11 to (55), then we get

I(=)
Q �ε N

−η0+εT 2δ−1X2U9 �η T
2δ−1X2N−η (57)

which is a power saving.

Now we deal with I( 6=)
Q . We introduce a parameter H which is small power of N . We

further split I(6=)
Q into I 6=,>Q + I( 6=,≤)

Q according to (bf, bf′ ) > H or not. We first handle big
gcd.

Lemma 3.12.

I(6=,>)
Q �η NT

2(δ−1)N−η
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Proof. Apply (54) and replace (q0, b
2
f ) by (q, b2

f ) and (bf − bf′ , q) by q:

I(6=,>)
Q �ε

N εX2U8

T

∑
f∈F

∑
f
′∈F

(bf,bf′ )>H

∑
Q≤q≤2Q

(q, b2
f )

1
2 (q, b2

f
′ )

1
2

q

�ε
N εX2U8

T

∑
f∈F

∑
h|b2f
h>H

∑
f
′∈F

b
f
′≡0(h)

∑
Q≤q≤2Q

(q, b2
f )

1
2 (q, b2

f
′ )

1
2

q

�ε
N εX2U8

T

∑
f∈F

∑
h|b2f
h>H

∑
f
′∈F

b
f
′≡0(h)

∑
q̃1|bf2

∑
q̃1
′ |b2

f
′

(q̃1q̃1
′
)

1
2

∑
Q≤q≤2Q

[q̃1,q̃1
′
]|q

1 (58)

Now since [q̃1, q̃1
′
] > (q̃1q̃1

′
)

1
2 , the above

�ε
N εX2U9

T

∑
f∈F

∑
h|b2f
h>H

∑
f
′∈F

b
f
′≡0(h)

∑
q̃1|bf2

∑
q̃1
′ |b2

f
′

1 (59)

From Lemma 3.11, we have
∑

f
′∈F

b
f
′≡0(h)

1� T δ

Hη0
. We set H = Q

η0
10
0 . Therefore,

(59)�ε
N εX2U9T 2δ

THη0
�ε

N εT 2δ−1X2U9

Hη0
�η T

2δ−1X2N−η

which is a power saving. �

Next we deal with small gcd. We write (bf, bf′ ) = h and bf = hg1, bf′ = hg2, bf − bf′ = hg3.
Then g1, g2, g3 are mutually relatively prime. We have

Lemma 3.13.

I( 6=,≤)
Q �η N

1−ηT 2(δ−1)
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Proof. From (54),

I(6=,≤)
Q �ε

N εX2U8

T

∑
f∈F

∑
f
′∈F

(b
f
′ ,bf)≤H

∑
Q≤q≤2Q

(q0, b
2
f )

1
2 (q0, b

2
f
′ )

1
2 (bf − bf′ , q)

1
4

q
5
4

�ε
N εX2U8

TQ
5
4

∑
f∈F

∑
f
′∈F

(b
f
′ ,bf)≤H

∑
Q≤q≤2Q

(q0, bf)(q0, bf′ )(bf − bf′ , q)
1
4

�ε
N εX2U8

TQ
5
4

∑
f∈F

∑
f
′∈F

(b
f
′ ,bf)≤H

∑
h|(bf,bf′ )

h
9
4

∑
g1|bf

∑
g2|bf′

∑
g3|bf−bf′
g3�Q

g1g2g
1
4
3

∑
Q≤q≤2Q

[hg1,hg2,hg3]|q

1

�ε
N εX2U8H

9
4

TQ
5
4

∑
f∈F

∑
f
′∈F

(b
f
′ ,bf)≤H

∑
g1|bf

∑
g2|bf′

∑
g3|bf−bf′
g3�Q

g1g2g
1
4
3

q

g1g2g3

�ε
N εX2U8H

9
4

TQ
1
4

∑
f∈F

∑
f
′∈F

(b
f
′ ,bf)≤H

∑
g3|bf−bf′
g3�Q

g
− 3

4
3

�ε
N εX2U8H

9
4

TQ
1
4

∑
f∈F

∑
g3�Q

g
− 3

4
3

∑
f∈F

b
f
′≡bf(g3)

1

By Lemma 3.11,
∑

f
′∈F 1bf′≡bf(g3) � T δ

g
η0
3

. Therefore,

I(6=,≤)
Q �ε

N εX2U9H
9
4

TQ
1
4

∑
f∈F

T δQ
1
4
−η0 �ε N

εT 2δ−1X2U9H
9
4Q−η0

0 �η T
2δ−1X2N−η

Again we have a power savings for I(6=,≤)
Q . �

In summary, we have

Lemma 3.14.

I2 �η N
1−ηT 2(δ−1)

3.5. Minor Arc Analysis III. In this section we deal with the last part of the integral,
which is on the minor arcs corresponding to X < q < M , namely I3. We keep all the
notations from the previous sections. Return to (32), and again for simplicity we restrict
our attention on the summands of RU

N where u even:

Ru,f

(
r

q
+ β

)
=
∑
x,y∈Z

ψ
(xu
X

)
ψ
(yu
X

)
e

(
f(xu, yu)

(
r

q
+ β

))

= e

(
−
(
r

q
+ β

)
bf

) ∑
x,y∈Z

ψ
(xu
X

)
ψ
(yu
X

)
e

(
ru0f̃(x, y)

q0

)
e(̃f(x, y)u2β) (60)
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Now we rewrite eq0(ru0f̃(x, y)) into its Fourier expansion. We have

eq0(ru0f̃(x, y)) =
1

q2
0

∑
m(q0)

∑
n(q0)

∑
l(q0)

∑
t(q0)

eq0(ru0f̃(l, t) + lm+ tn)eq0(−mx− ny)

=
∑
m(q0)

∑
n(q0)

Sf(q0, u0r,m, n)eq0(−mx− ny)

Therefore,

Ru,f

(
r

q
+ β

)
= eq(−rbf)

∑
m(q0)

∑
n(q0)

Sf(q0, u0r,m, n)λf

(
X, β;

m

q0

,
n

q0

, u

)
,

where

λf

(
X, β;

m

q0

,
n

q0

, u

)
:=
∑
x,y∈Z

ψ
(xu
X

)
ψ
(yu
X

)
e

(
−mx
q0

)
e

(
−ny
q0

)
e(f(xu, yu)β).

We apply the Cauchy-Schwarz inequality to the u variable for IQ:

IQ =
∑

Q≤q≤2Q

∑
r(q)

′
∫ 1

qM

− 1
qM

∣∣∣∣R̂U
N

(
r

q
+ β

)∣∣∣∣2 dβ
� U

∑
u<U

∑
Q≤q≤2Q

∑
r(q)

′
∫ 1

qM

− 1
qM

∣∣∣∣∣∑
f∈F

Ru,f

(
r

q
+ β

)∣∣∣∣∣
2

dβ

� U
∑
u<U

∑
f∈F

∑
f
′∈F

∑
Q≤q≤2Q

∑
m,n,m′ ,n′ (q0)

∑
r(q)

′Sf(q0, u0r,m, n)Sf′ (q0, u0r,m
′ , n′)eq(r(−bf + bf′ ))


×
∫ 1

qM

− 1
qM

λf

(
X, β;

m

q0

,
n

q0

, u

)
λf′

(
X, β;

m′

q0

,
n′

q0

, u

)
dβ

Since m,n,m
′
, n
′

comes from congruence classes (mod q0), we can choose representatives
such that m,n,m

′
, n
′

with absolute values bounded by q0
2

. The main contribution of IQ
comes from the terms m,n,m

′
, n
′ � uq0

X
by non-stationary phase. To see this, for the terms

with any of m,n,m
′
, n
′ � uq0

X
(let’s say m� uq0

X
), we use Poisson summation to rewrite λf:

λf

(
X, β;

m

q0

,
n

q0

, u

)
=
X2

u2

∫ ∞
−∞

∫ ∞
−∞

ψ(x)ψ(y)e

(
−mX
q0u

x

)
e

(
−nX
q0u

y

)
e(f(xX, yX)β)dxdy

+
∑
ξ,ζ∈Z

(ξ,ζ)6=(0,0)

X2

u2

∫ ∞
−∞

∫ ∞
−∞

ψ(x)ψ(y)e

((
ξX

u
− mX

q0u

)
x

)
e

((
ζX

u
− nX

q0u

)
y

)
e(f(xX, yX)β)dxdy

If ξ 6= 0, since mX
q0u
≤ X

2u
and f(xX, yX)β � 1, we have∫ ∞

−∞

∫ ∞
−∞

ψ(x)ψ(y)e

((
ξX

u
− mX

q0u

)
x

)
e

((
ζX

u
− nX

q0u

)
y

)
e(f(xX, yX)β)dxdy �

(
u

Xξ

)N0
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for anyN0 > 0, by first applying non-stationary phase to the x variable and trivially bounding
the y integral. From this, one gets

λf

(
X, β;

m

q0

,
n

q0

, u

)
=
X2

u2

∫ ∞
−∞

∫ ∞
−∞

ψ(x)ψ(y)e

(
−mX
q0u

)
e

(
−nX
q0u

)
e(f(xX, yX)β)dxdy

(61)

+O

(( u
X

)N0
)

(62)

for any N0 > 0. We use non-stationary phase again to treat the above integral, then we
obtain∣∣∣λf(X, β, m

q0

,
n

q0

, u

) ∣∣∣� X2

u2
min

{( uq0

Xm

)2N0

,
(uq0

Xn

)2N0
}
� X2

u2

(uq0

X

)2N0 1

mN0nN0
.

Therefore, we have∫ 1
qM

− 1
qM

λf

(
X, β;

m

q0

,
n

q0

, u

)
λf′

(
X, β;

m′

q0

,
n′

q0

, u

)
dβ � 1

QM

X4

u4

(uq0

X

)4N0 1

mN0nN0m′N0n′N0

Now we use (48) to bound |S|, we thus have

U
∑
u<U

∑
f∈F

∑
f
′∈F

∑
Q≤q≤2Q

∑
m,n,m

′
, or n

′�uq0
X

 ′∑
r(q)

Sf(q0, u0r,m, n)Sf′ (q0, u0r,m
′
, n
′
)eq(r(−bf + bf′ ))


×
∫ 1

qM

− 1
qM

λf

(
X, β;

m

q0

,
n

q0

, u

)
λf′

(
X, β;

m′

q0

,
n′

q0

, u

)
dβ

�ε N
εUT 2δ

∑
u<U

∑
Q≤q≤2Q

T
9
4u4

Q
5
4

1

QM

X4

u4

(uq0

X

)4N0 ∑
m,n,m′ ,or n′�uq0

X

1

mN0nN0m′N0n′N0
(63)

If We set N0 = 5, then the above

� N εU20T 2δ+ 63
4 X

7
4

Thus we see |S| is indeed mainly supported on m,n,m
′
, n
′ � uq0

X
. Now we split the terms

m,n,m
′
, n
′ � uq0

X
into two parts according to whether bf = bf′ or not:

IQ � I(=)
Q + I(6=)

Q ,

where

I(=)
Q =

∑
u<U

∑
f∈F

∑
f
′∈F

b
f
′=bf

∑
Q≤q≤2Q

∑
m,n,m′ ,n′�uq0

X

S(q, q0, u0, ξ, ζ, f, ξ
′
, ζ
′
, f
′
)

×
∫ 1

qM

− 1
qM

λf

(
X, β;

m

q0

,
n

q0

, u

)
λf′

(
X, β;

m′

q0

,
n′

q0

, u

)
dβ (64)
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and

I(6=)
Q =

∑
u<U

∑
f∈F

∑
f
′∈F

b
f
′ 6=bf

∑
Q≤q≤2Q

∑
m,n,m′ ,n′�uq0

X

S(q, q0, u0, ξ, ζ, f, ξ
′
, ζ
′
, f
′
)

×
∫ 1

qM

− 1
qM

λf

(
X, β;

m

q0

,
n

q0

, u

)
λf′

(
X, β;

m′

q0

,
n′

q0

, u

)
dβ (65)

For λ, since the sum is supported on x, y � X
u

, λ has a trivial bound X2

u2 . Therefore, for
� ∈ {=, 6=}, we have

I�Q �
UX4

QM

∑
u<U

1

u4

∑
f∈F

∑
f
′∈F

b
f
′�bf

∑
Q≤q≤2Q

∑
m,n,m′ ,n′�uq0

X

|S|. (66)

If bf 6= bf′ , then we could use the bound from (48) to estimate S. We have

I(6=)
Q �ε

UX4

QM

∑
u<U

1

u4

∑
f∈F

∑
f
′∈F

b
f
′=bf

∑
Q≤q≤2Q

∑
m,n,m′ ,n′

(bf − bf′ , q)
1
4

(
q

q0

)2

(q0, b
2
f )

1
2 (q0, b

2
f
′ )

1
2 q−

5
4

+ε

�ε
N εUX4

QM

∑
u<U

1

u4

∑
f∈F

∑
f
′∈F

bf 6=bf′

∑
Q≤q≤2Q

(uq0

X

)4

T
9
4u4Q−

5
4 �ε T

2(δ−1)N1+ε(T 6X−
1
4U6)

(67)

where we replaced (bf− bf′ , q), (q0, b
2
f )

1
2 and (q0, b

2
f
′ )

1
2 by T . Thus we have a significant power

saving for I(6=)
Q .

Next we deal with I(=)
Q , we further split I(=)

Q into two pieces

I(=)
Q = I(=,=)

Q + I(=,6=)
Q

according to whether f(m,−n) = f
′
(m

′
,−n′) or not. For I(=, 6=)

Q , we use Lemma 3.10 to bound
|S|. We have

I(=, 6=)
Q � UX4

QM

∑
u<U

∑
Q≤q≤2Q

∑
m,n,m′ ,n′�uq0

X

∑
f,f
′∈F

bf=bf′

f(m,−n)6=f
′
(m
′
,−n′ )

(q0, b
2
f )q
− 9

8
+ε

(
q

q0

) 17
8 ∣∣∣f(m,−n)− f

′
(m

′
,−n′)

∣∣∣ 1
2

(68)

Noticing that (q0, b
2
f )� T 2, q

q0
� U2 and f(m,−n), f

′
(m

′
,−n′)� T (UQ

X
)2, we have

I(=, 6=)
Q �ε N

εUX
4

QM
UQ

(
UQ

X

)4

T 2δ T
2

Q
9
8

U
17
4 T

1
2
UQ

X
�ε N

εU
45
4 T 2δ+ 43

8 X
15
8 , (69)

which is again a significant power saving.
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Next we deal with I(=,=)
Q . This will complete our minor arc analysis. From (48) and (66)

we have

I(=,=)
Q � UX4

QM

∑
u<U

1

u4

∑
f∈F

∑
Q≤q≤2Q

∑
m,n�uq0

X

(b2
f , q)

q
u4
∑
f
′∈F

b
f
′=bf

∑
m
′
,n
′�uq0

X

f
′
(m
′
,−n′ )=f(m,−n)

1

For the inner double sum we shall prove the following lemma:

Lemma 3.15. ∑
f
′∈F

b
f
′=bf

∑
m
′
,n
′�uq0

X

f
′
(m
′
,−n′ )=f(m,−n)

1�ε N
ε
(
f̃(m,−n),−8b2

f

) 1
2

Proof. This lemma will follow from the following three claims.

Claim 1: The number of classes of equivalent quadratic forms having discriminant −8b2
f

and representing the integer z = f̃(m,−n) is bounded by N ε(̃f(m,−n),−8b2
f )

1
2 .

Suppose z = f̃(m,−n) is primitively represented by a quadratic form f0 (i.e. (m,n) = 1),
then f0 is equivalent to a quadratic form zx2 + B0xy + C0y

2, with |B0| < z. Now since
B2

0 − 4zC0 = −8b2
f , we have B2

0 ≡ −8b2
f (z). From the Chinese Remainder Theorem, the

number of solutions of

B2
0 ≡ −8b2

f (z) (70)

is the the product of the numbers of solutions of

B2
0 ≡ −8b2

f (p
ni
i ) (71)

for each pnii ||z.

If
(
−2
p
ni
i

)
= −1, then there’s no solution to (71). If

(
−2
p
ni
i

)
= 1, let −8b2

f ≡ kplii (pnii ) where

0 ≤ li ≤ ni and (k, pi) = 1. Noticing that li is even, all the solutions of (71) are given by

±p
li
2 l + pni−

li
2 s,

where l is a solution of

l2 ≡
−8b2

f

plii
(pni−li) (72)

and 0 ≤ s ≤ p
li
2 − 1. Thus we see there are at most 2p

li
2 such solutions to (71). By

multiplicativity, the number of solutions of (70) is bounded by 2w(̃f(m,−n))(̃f(m,−n),−8b2
f )

1
2 .

Therefore, our choices for B0 is at most 2w(̃f(m,−n))+1(̃f(m,−n),−8b2
f )

1
2 . If z is not primitively

represented by f0, then a divisor z0 of z is primitively represented. There are at most d(z)

many such cases, and the bound 2w(̃f(m,−n))+1(̃f(m,−n),−8b2
f )

1
2 works for each case. Thus

Claim 1 follows.
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Claim 2: In each equivalent class in F, the number of equivalent quadratic forms is
bounded: Suppose f

′
= (A

′
, 2B

′
, C
′
) and f

′′
= (A

′′
, 2B

′′
, C
′′
) are two equivalent quadratic

forms in F, then we can find

(
g h
i j

)
∈ SL(2,Z) ∪

(
1 0
0 −1

)
SL(2,Z) such that

A
′′

= g2A
′
+ 2giB

′
+ i2C

′
,

B
′′

= ghA
′
+ (gi+ hj)B

′
+ ijC

′
,

C
′′

= h2A
′
+ 2hjB

′
+ j2C

′
(73)

The first equation above can be rewritten as A
′′

= A
′
(
g + iB

′

A′

)2

+ i2
2b2f
A′

. So from i2
2b2f
A′
≤ A

′′
,

bf � T , A
′
, A
′′ � T , we know i� 1, and A

′
, A
′′ � T . Then from A

′
(
g + iB

′

A′

)2

≤ A
′′ � T

we also know g � 1. Similarly h, j � 1, so the number of quadratic forms in F in each
equivalent class is bounded. Therefore Claim 2 holds.

Claim 3: given an integer z � N and a quadratic form f of discriminant −8b2
f , there are

at most N ε pairs of integers m,n such that f(m,−n) = z.

This is because Am2 − 2Bmn+ Cn2 = z can be rewritten as

(Am+ (B +
√
−2bf)n)(Am+ (B −

√
−2bf)n) = Az

Since Az � N2, the number of divisors of Az in Z[
√

2i] is bounded by N ε. The pairs (m,n)
can be identified with Am + (B +

√
−2bf)n, which is a divisor of Az. Therefore, Claim 3

also holds.

Our lemma then follows Claims 1, Claim 2 and Claim 3. �

We need the following final ingredient to estimate I(=,=)
Q :

Lemma 3.16. Given a primitive quadratic form (A, 2B,C) of discriminant −8b2
f , for any

d|2b2
f , and any integer W > 0, we have∑

m,n≤W
Am2−2Bmn+Cn2≡0(d)

1� W 2d−
1
2 +W

The implied constant is absolute.

Proof. First we show that ∃γ =

(
i j
g h

)
∈ SL(2,Z) and Ã, B̃, C̃ ∈ Z such that

Ax2 + 2Bxy + Cy2 = Ã(ix+ gy)2 + B̃(ij + gh)xy + C̃(jx+ hy)2

and

(Ã,−2b2
f ) = 1, B̃ ≡ C̃ ≡ 0(d).

Indeed, for each pnii ||d, since f is primitive, at least one of A,B,C can not be divided by p.
For example, if (A, p) = 1, then

Ax2 + 2Bxy + Cy2 ≡ A(x+BĀy)2 + 2b2
f Āy

2 ≡ A(x+BĀy)2.
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We set

γpnii :=

(
1 BĀ
0 1

)
∈ SL(2,Z/pnii Z)

so γpnii (A, 2B,C) = (A, 0, 0)(pnii ). Now from the Chinese remainder theorem, we could find

γd ∈ SL(2,Z/dZ) such that γd ≡ γpnii in SL(2,Z/pnii ) for each pnii ||d. Since (Ã, d) = 1 and

B̃ ≡ 0(d), it forces C̃ ≡ 0(d). Therefore,

∑
m,n≤W

f(m,−n)≡0(d)

1 =
∑

m,n≤W
(im+gn)2≡0(d)

1

If (im + gn)2 ≡ 0(d), then im + gn can be parametrized by sd0, where s ∈ Z and d0 ≥ d
1
2 .

Therefore, we have

im+ gn ≡ 0(d0) (74)

For the above equation to have a solution, since (i, g) = 1, gn should be of the form k(i, d0)
where k ∈ Z, so there are at most W

(i,d0)
+ 1 choices for n. Fixing such an n, (74) can be

reduced to

i

(i, d0)
m ≡ k

(
mod

d0

(i, d0)

)
.

There are at most W
i
d0

+ 1 such choices for m. Therefore,

∑
m,n≤W

f(m,−n)≡0(d)

1 =
∑

m,n≤W
(im+gn)2≡0(d)

1�
(

W

(i, d0)
+ 1

)(
W
d0

(i,d0)

+ 1

)
� W 2d−

1
2 +W.

�

Now we can show that

Lemma 3.17.

I(=,=)
Q �η T

2δ−1X2N−η
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Proof. Applying Lemma 3.15 and Lemma 3.16 to (68) with W = uq0
X

, we have

I(=,=)
Q �ε

N εUX4

QM

∑
u<U

1

u4

∑
f∈F

∑
Q≤q≤2Q

∑
m,n�uq0

X

(b2
f , q)

q
u4(f(m,−n),−8b2

f )
1
2

�ε
N εUX4

QM

∑
u<U

∑
f∈F

∑
Q≤q≤2Q

(b2
f , q)

q

∑
m,n�uq0

X

(f(m,−n),−2b2
f )

1
2

�ε
N εUX4

QM

∑
u<U

∑
f∈F

∑
Q≤q≤2Q

(b2
f , q)

q

∑
d1|−2b2f

d
1
2
1

∑
m,n�uq0

X
f(m,−n)≡0(d1)

1

�ε
N εUX4

QM

∑
u<U

∑
f∈F

∑
Q≤q≤2Q

(b2
f , q)

q

∑
d1|−2b2f

d
1
2
1

((uq0

X

)2

d
− 1

2
1 +

uq0

X

)

�ε
N εU4X4

QM

∑
f∈F

∑
Q≤q≤2Q

(b2
f , q)

q
· Tq
X

�ε
N εU4X3T

QM

∑
f∈F

∑
d2|b2f

d2

∑
Q≤q≤2Q
q≡0(d2)

1

�ε N
εU4X2T δ �ε N

εU4X2T 2δ−1T 1−δ (75)

Therefore, we have a power saving here. �

From (67), (69) and (75) we obtain

Lemma 3.18.

I3 �η T
2δ−1X2N−η.

3.6. Proof of Theorem 1.4. We are now ready to give the proof of Theorem 1.4 following
the strategy at the end of §3.1.

Proof of Theorem 1.4. From Lemma 3.2 we know that∑
n
2
<n<N

|RN(n)−RU
N(n)| �ε

T δX2+ε

U
�η T

δX2N−η.

From Lemma 3.8, Lemma 3.14 and Lemma 3.18 we know that∑
n
2
<n<N

|EUN (n)|2 ≤
∫ 1

−1

|(1− T(θ))R̂U
N(θ)|2dθ �η T

2δ−1X2N−η.

By Cauchy inequality, we then have∑
n
2
<n<N

|EUN (n)| �η T
δX2N−η.

From Lemma 3.6, we also have∑
n<N

|MN(n)−MU
N(n)| �η T

δX2N−η.
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Since MN = RN + EN and MU
N = RU

N + EUN , we then have∑
n<N

|EN(n)− EUN (n)| �η T
δ−1X2N−η.

As a result, ∑
n<N

|EN(n)| �η T
δX2N−η.

Let Z be the exceptional subset of {n|n ≡ κ1(mod 8)} ∩ (N
2
, N) consisting of all numbers

which are not represented by our ensemble F. Then for z ∈ Z, we haveMN(z)�ε N
−εT δ−1.

Since RN(z) = 0, we have |EN(z)| �ε N
−εT δ−1.

Therefore,

|Z|T δ−1N−ε �ε

∑
n∈Z

|EN(z)| �η T
δX2N−η.

So |Z| � N1−η, and we prove the density one theorem for the C1-orbit under Γ. There are
six orbits in P , namely C1, C2, C3, C1′ , C2′ , C3′ . We can prove the same conclusion for every
orbit simply by changing the order of components of r or r

′
. Thus Theorem 1.4 follows. �
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