1 A dynamical outlook
on orbital counting problems

This section is loosely based on the survey [Oh].
A summary written by Claire Burrin and Xin Zhang.

Abstract

We expose the strategy, as explicited by Duke, Rudnick and Sarnak
[DRS], of reinterpreting orbital counting problems as equidistribution
problems, and give examples of some underlying equidistribution prob-
lems on the modular surface.

Let G be a non-compact connected semisimple Lie group with finite center
and let X = G/K be its Riemannian symmetric space, endowed with G-
invariant Riemannian metric dx. A guiding example through this section will
be the hyperbolic plane H = SL(2,R)/SO(2), realized via the isomorphism
[g]SO(2) — [g].i = ‘Cl;—is Let I' < G be a lattice, e.g. SL(2,Z) in SL(2,R).

Counting along discrete orbits in X...

Denote by O the discrete I'-orbit at the base point zy = [K], i.e. O = T'zy.
The orbital counting function Ny : Ryy — N, defined by

No(T) = #{yeT :dx(xo,vro) < T},

records the (finite) number of points along the orbit O that are contained in
the ball
Br = BT<.’E0) = {.CE € X dx(l‘o,l’) < T}

of radius T and center zy in X. As T grows, so does the volume of the
Riemannian balls in the continuous family {Br}r=o. An orbital counting
problem is to determine the asymptotic growth rate of

No(T) = #(OnNnBy) for T — .



...via equidistribution

Consider the K-orbit KT'/I"in G/T" and its translates by elements [g] € G/K.
We say that [g] KT'/I' equidistributes in G/I" with respect to the Haar mea-
sure dg as [g] — oo if, for any ¢ € C.(G/T),

U(lglk)dk — ¥(g)dg  as [g] = oo
KT/T G/T

Here, dk denotes the Haar measure on G/I" that is supported on the closed
orbit KT'/T' = K/(K NT). We will assume that all Haar measures are
normalized, so that

vol (G/T) = vol (K/(KNT)) = 1.

Theorem 1. If [g|KT/T equidistributes in G/T" as [g] escapes to infinity,
then
No(T) ~ vol(Br) as T — oo.

The main object of this section is the proof of Theorem 1, which is ex-
posed in the next subsection. In Subsection 3, we attempt to illustrate the
dynamics underlying the equidistribution phenomenon in two examples on
the hyperbolic plane. In the final part of this section, we conclude with some
comments on the range of contexts where the above strategy may be applied,
among others the case of Apollonian packings.

A disclaimer

In reality, the Riemannian symmetric space context we introduced is too
restrictive. Indeed, the essential arguments in the proof of Theorem 1 are
the existence of Haar measures on quotients of locally compact groups and a
regularity assumption on the boundaries of growing compact sets By. More
explicitly, Theorem 1 holds for

G locally compact Hausdorff, I' < G discrete, H < G a closed subgroup
such that G and H are unimodular!, and {Br}7+¢ a continuous family
of compact sets in G/H such that vol(Br) — 0o as T" — oo and such
that {Br} is admissible in the following sense :

!This is in particular satisfied if I' < G and T'N H < H are both lattices.



Definition 2. A continuous family {Br}r=o of compact subsets in G/H is
said to be well-rounded if, for any ¢ > 0, there is a neighborhood U of
identity in G such that for

B :=|Jg.Br and By :=()g.Br,
geu geu
vol(Bz \ Br) _ _
vol(Br)

holds for every T' > 0.
It is easy to verify that

vol(Br) < vol(B7)

l1—-¢ <
c vol(Br) — vol(Br)

< l4¢ (1)

holds if and only if { Br} is well-rounded. Continuous families of Riemannian
balls are well-rounded. As an explicit example, the reader may keep in mind
that hyperbolic balls in H satisfy vol(Br) ~ meT as T — cc.

1.1 Proof of Theorem 1

Proof. Recall that x( is the base point [K] € G/K = X. In lieu of Ny,
introduce a more general counting function Fr : G x Ryy — N, defined by

Fr(g) = > lg(gyw) = . 1,
~ET/(TNK) ~ET/(PNK)
yzoEBT (9 20)
that counts all the points in O, without multiplicity, lying in translates of
the ball Br. Observe that Fr descends to a function on G/T" and that, for
any 1" > 0,
Fr(T') = No(T).

Our aim is to show that the normalised counting function

o) = Vﬁg;) on G/T

verifies
T—oc0
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In a first step, we show that the equidistribution of the KT'/I'-translates
yields the weak convergence

for any ¢ € C.(G/T"). In fact, by standard properties of Haar measures on
quotients,

) = /G i Leclgrmo) | o) g

F/ (PNK) vol(Br)

= /G Lsul9%0) 1 0) g

/(FOK VOI BT)

o ]'BT(gkxO)
= Lo ooy o) 0
L. /K ) 10t

r/r VOl BT)

= iz fo, ([ 2000 a8 ) i

and by letting vol(Br) — oo (as happens when 7' — 0), [g] can escape to
infinity. Therefore, assuming equidistribution,

jn s | ( [ v dg) d = (1,1)) )

To pass from weak convergence to pointwise convergence, define a modi-
fied counting function F;' for the modified data given by replacing By with
B (cf. Def. 2 for the notation). Let € > 0 and pick a symmetric neighbor-
hood of identity ¢ (as in Def. 2) and a test function ¢ € C.(G/T") that is
non-negative, supported on UI" and normalized such that [¢ = (1,¢) = 1.

From the definitions, it follows that for every g € U,

Fr(T') < Fy (gT)

and therefore

Fr(I') < (Ff,4).



Then, by (1),

vol(B5)
VOI(BT)

fr(T) < (7. 0) < (L+e)(ff, ¥),

which, together with (2), implies

limsup fr(I) < (1+e)(l,¢) =1+e.

T—00
By defining similarly F. for B, one obtains

1—¢e < li%ninf fr(T) < limsup fr(I') < 1+e.
—00

T—o0

Since € can be chosen arbitrarily small,

71im fr(T) =1, i.e. No(T) ~ vol(Br) as T — oc.
—00

1.2 Some illustrative equidistribution results

In this subsection, we describe two equidistribution problems related to the
homogeneous dynamics of the modular surface, and deduce the corresponding
orbital counting results from Theorem 1. Set G = SL(2,R), I' = SL(2,Z),

ot/2
A:{at:( e—t/2)3t€R}7

N = {n = <1 ‘j) ‘s € R} , K =Stabg(i) = SO(2) ~ S".

The 2Poir%caré upper half-plane is endowed with the Riemannian metric
ds? = 2" and hyperbolic measure dy = %% The standard fundamental
domain for I' on H is the hyperbolic triangle

11

{z:x+iy€H:|zl>1, x € [—5,5)}U{z:\z|:1, x < 0}.

We shall also denote by p the resulting measure on the orbifold I'\ H.
The group G admits a Haar measure, that can be expressed in the co-
ordinates of the Iwasawa decomposition G = NAK as dg = e 'dsdtdk, and
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that projects to the hyperbolic measure on H. We again denote by dg the
resulting Haar measure on I'\G. The latter quotient may be identified with
the unit tangent bundle of I'\H, i.e. T*(T\H) ~ I'\G.

Via this identification, we realize the geodesic flow on the unit tangent
bundle as the action of A on I'\G by right multiplication, and the horocycle
flow as the action of N on I'\G by right multiplication.

We conclude this introduction with two remarks. First, for our study
orbits translated by a sequence that escapes to infinity, it suffices to take
(a;) as the escaping sequence. For instance, in G/K, this is clear because
of the Cartan decomposition G = KAK (where recall that K is compact).
Second, for the application of Theorem 1, we note that both K and N are
unimodular closed subgroups of G and that, as previously noted, hyperbolic
balls are well-rounded.

Equidistribution of spheres in I'\H

The sphere in H of radius ¢ and center the basepoint ¢ is the set
St = St(l) = {Z cH: dH(Z,Z) = t} = {kat.i ke K}

as dy(i,as.1) = dyg(i,e'i) = t. Let p; denote the normalized Haar measure
supported on [S;] € T\H. In other words, on the modular surface, for any

Y € C(T\H),

Y([kay.1])dk = Wd .
K [St]

Theorem 3. For any ¢ € C.(I'\H),
vy — Wdp as t— o0.
[St] \H

In practice, one lifts ¢ to the unit tangent bundle and shows that the
convergence

J(Fkaﬂdk—)/ Jdg as t— 00
I\[K G

is a consequence of the mixing of the geodesic flow. The equidistribution,
together with Theorem 1, yields the lattice point counting result

#{y el :dy(i,v.i) < T} ~mel as T — oc.
Y Y



Equidistribution of periodic horocycles in I'\G

This time, we consider the periodic orbits of the horocycle flow T'(I'\H)
that are the horizontal parallel lines in the fundamental domain with vec-
tors pointing upwards. These periodic horocycles are parametrized by their
Euclidean height, so that at height ¢, the corresponding periodic horocycle is

Ot B FNat.z'

and has length e~t. Therefore, as we go up towards the cusp, the horocycles
become shorter, while as ¢ — —oo, they become longer. One notes that
as a low-lying periodic horocycle is brought back via an isometry in I' to
the fundamental domain, its trajectory becomes quite complicated, with the
orbit still having length e~*. The following result is, again, a consequence of
Howe-Moore’s Theorem.

Theorem 4. For any ¢ € C.(I'\G),

»(Cnay)dn — dg  as t— —o0.
I\TN e

Fix a base horocycle xy = [N], and consider the discrete orbit I'zg. In
light of Theorem 1, the number of horocycles in the orbit that meet growing
well-rounded compact sets By has asymptotic growth

#(FZEO N BT) ~ VOl(BT) as 1T — oo.

In this last example, G/N is not a symmetric space, and this gives a concrete
illustration of the generality of the strategy exposed in this section.

1.3 Further remarks

It has been an ad hoc assumption that the discrete orbits we consider come
from lattices. If we consider instead thin subgroups, i.e. discrete subgroups of
infinite covolume, then it is a characteristic feature of their orbits that they
contain much fewer points. And in fact, the conclusion of Theorem 1 depends
on I' being a lattice. It is an easy exercise to check this with examples in
Euclidean space.

A natural example of thin group arises from the symmetries of the Apol-
lonian packing. Determining the asymptotics of the number of circles in a
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fixed packing P bounded by some curvature can be formulated as an orbital
counting problem, and it has been shown in [KO] that

#{C P :curv(C) < T} ~ cpT?,

where? 6 ~ 1.30569 is the Hausdorff dimension of the fractal set (Jo.p C, by
relying on the strategy exposed in this note. The authors prove in [KO] the
equidistribution of expanding closed horospheres in hyperbolic 3-space, with
convergence not to the Haar measure of I'\G, but to a measure determined
by the Patterson-Sullivan base eigenfunction, which plays the role of the
constant function 1 as the base eigenfunction of the Laplacian in the lattice
case.

Finally, we would also like to remark that the strategy described in this
section also finds application in the study of integral and rational points on
homogeneous varieties. This is discussed in the survey [Oh].
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