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The study of spatial statistics originates in mathematical physics,
and has received attention also in analytic number theory and
probability.

In the Euclidean setting, the problem can be formulated as:

Question
For a fixed vector ~w in R2, consider the following increasing
sequence of finite subsets of the unit circle:

ApNq “

"

~v ` ~w

| ~v ` ~w |
: ~v P Z2, | ~v ` ~w |ă N

*

What can we say about the distribution of ApNq, as N Ñ8?
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The set ApNq is uniformly distributed as N Ñ8 (analytic number
theory, dynamics, harmonic analysis)

Beyond uniform distribution, the study of the fine structure of
ApNq can explain the dynamics of the motion of an electron in a
metal in the periodic Lorentz model.
Using equidistribution of flows in some homogeneous space,
Marklof and Strömbergsson (Ann. Math 2011) determined a class
of spatial statistics. Among them is the gap distribution.
Let d1, d2, ¨ ¨ ¨ , d#ApNq be the gaps from ApNq. Define the gap
distribution function

FNpsq “
#tdi : di{

2π
#ApNq ă su

#ApNq
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Theorem (Marklof-Strömbergsson, 2011)

As N Ñ8, FNpsq pointwise converges to a continuous function
F psq. If ~w R Q2, F agrees with the limiting gap distribution of
?
npmod 1q.

Figure: Left: The distribution of gaps in the sequence
?
n mod 1,

n “ 1 ¨ ¨ ¨ 7765, vs. the Elkies-McMullen distribution. Right: Gap
distribution for the directions of the vectors pm ´

?
2, nq P R2 with

m P Z, n P Zě0, pm ´
?

2q2 ` n2 ă 4900. The continuous curve is the
Elkies-McMullen distribution.



The study of spatial statistics is extended to the setting of
hyperbolic lattices of finite covolume by Boca-Popa-Zaharescu,
Kelmer-Kontorovich and Marklof-Vinogradov:

Figure: Directions of lattice points observed from i. Picture by
Kelmer-Kontorovich



Question
What happens if the hyperbolic lattice is of infinite covolume?

We consider the following group: Let Λ be a Schottky group
generated by three hyperbolic reflections, with isometric circles
C1,C2,C3

C2

C3

C1

ℱ

Figure: A hyperbolic reflection group
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Figure: A hyperbolic reflection group

Let ApNq be the collection of tangencies from circles with
curvatures (1/radius) ă N. We want to study the gap distributions
of ApNq.
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Let δ be the critical exponent of Λ, which agrees with the
Hausdorff dimension of the closure of the set of all tangencies.
There are „ cN2δ in total, so the average gap is 1

cN2δ .

But it turns out most gaps are of the order 1{N2, because
tangencies tend to cluster over tiny regions.
Therefore, we need to define the gap distribution function for ApNq
to be

FNpsq “
#tdi : di{

1
N2 ă su

#ApNq
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Theorem (Z)

As N Ñ8, FNpsq pointwise converges to F psq, where F is a
continuous, nonnegative function which is supported away from 0
and limsÑ8 F psq “ 1.



Histograms of dFN
ds for various N:
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Figure: N “
?

2ˆ 103 and
tangencies are taken from
[0.695204, 2.980334]



Ingredients of the proof:

§ Reduction to a hyperbolic lattice point counting problem in
PSUp1, 1q. A typical such problem is to count lattice points
asymptotically in an expanding subset of PSUp1, 1q

§ Tools from homogeneous dynamics (Oh-Shah’s Theorem
(JAMS, 2013), mixing of the geodesic flow under
Bowen-Margulis-Sullivan density)
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Figure: Tangencies in an Apollonian 9-circle packing



Theorem (Rudnick-Z, 2015)

There exists a limiting gap distribution for tangencies from an
Apollonian 9-circle packing.
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Figure: The density F
1

psq of the
gap distribution for Apollonian
9-circle packings.

Figure: An Apollonian 9-Circle
Packing



Key ideas
§ There is a finite covolume group Λ acting on the tangent

circles.

§ Each gap can be expressed uniquely as pγpαi q, γpαjqq, where
αi , αj are tangencies from Ci ,Cj . So gaps in ApNq with
relative length less than s can be divided into finite families
Ai ,jpsq “ tpγpαi q, γpαjqq : γ P
Λ, pγpαi q, γpαjqq is a gap in A(N) with relative length less than su

§ #A1,2psq “ #tγ P Λ : κpγC1q ă N, κpγC2q ă N, κpγC3q ą

N, κpγC4q ą N, κpγC5q ą N, dpγpαi q, γpαjqq ă
s
N2 u

§ Under the coordinate of Cartan decomposition, the above
conditions can be rephrased as

pφ1pγq, φ2pγq, tpγqq P ΩspNq,

where

ΩspNq “ 2 logN¨Ωsp1q “ tpφ1, φ2, 2 logN¨tq : pφ1, φ2, tq P Ωsp1qu
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Cartan Decomposition
Let D be the Poincaré disc with the metric ds2 “ 4pdx2`dy2q

p1´px2`y2qq2
. The

orientation-preserving symmetry group of D is

G “ PSUp1, 1q “

"ˆ

ξ η
η̄ ξ̄

˙

ˇ

ˇ

ˇ
|ξ|2 ´ |η|2 “ 1

*

– PSL2pRq.

Let

K “

#

kφ “

˜

e
φi
2

e
´φi
2

¸

ˇ

ˇ

ˇ
φ P r0, 2πq

+

,

A “

"

at “

ˆ

cosh t
2 sinh t

2
sinh t

2 cosh t
2

˙

ˇ

ˇ

ˇ
t P r0,8q

*

.

Recall the Cartan decompositon G “ KA`K that each g P G can
be written in a unique way as

g “ kφ1pgqatpgqkπ´φ2pgq

with φ1pgq, φ2pgq P r0, 2πq and tpgq ą 0. The Haar measure is
given by dg “ etdφ1dφ2dt.



Joint equidistribution of Lattices of Finite Covolume in
Cartan Decomposition

Theorem (Good)

Let Λ be a lattice of SUp1, 1q of finite covolume. Let I,J be
intervals in r0, 2πq. As N Ñ8,

#tγ P Λ : φ1pγq P I, φ2pγq P J , tpγq ă Nu „
lpIqlpJ q
4π2V pΛq

eN ,

where l is the standard arclength measure.



Joint equidistribution of Lattices of infinite Covolume in
Cartan Decomposition

Theorem (Bourgain-Kontorovich-Sarnak, Oh-Shah,
Mohammadi-Oh)

Let Λ be a lattice of SUp1, 1q of infinite covolume, with critical
exponent δ. Let I,J be intervals in r0, 2πq. As N Ñ8,

#tγ P Λ : φ1pγq P I, φ2pγq P J , tpγq ă Nu „
νpIqνpJ q
4π2V pΛq

eδN ,

where ν is the Patterson-Sullivan measure on [0,2π).



Motivating problems: How are the circles from an Apollonian circle
packings distributed?

Theorem (Oh-Shah, Invent. Math. 2012)

There is a finite Borel measure µ on the plane, such that for any
region R with smooth boundary, KRpNq the number of circles in
R with curvature bounded by N has asymptotic growth

KRpNq „ µpRqNδ0

where δ0 « 1.305688 is the Hausdorff dimension of the circle
packing.



Figure: A region R with smooth boundary



Beyond equidistribution, what else can we say? Let XN be the
centers of circles from P. We want to study the spatial statistics
on XN .

Figure: Centers



Electrostatic energy

The electrostatic energy of XN is defined to be

E pXNq “
ÿ

p,qPXN
p‰q

1

|p ´ q|

The energy E depends on both the global distribution of points as
well as a moderate penalty if two points are too close to each
other. More generally, one can consider the Riesz s-energy:

EspXNq “
ÿ

p,qPXN
p‰q

1

|p ´ q|s

Question
What’s the behavior of EspXNq as N Ñ8? Is there an asymptotic
growth?



Nearest neighbor spacing statistics

Let dp,N denote the distance of p to the remaining points of XN .
A typical dp,N should have scale 1{N.
We define the nearest spacing measure νpXNq on r0,8q by

νpXNq :“
1

#XN

ÿ

pPXN

δdp,NN .

where δξ is a delta mass at ξ P R`.

Question
Is there a limiting distribution for νpXNq as N Ñ8?


