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Construction of an Apollonian Circle Packing

Figure: Construction of an Apollonian circle packing
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An Apollonian circle packing

Figure: An Apollonian circle packing
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Integral Apollonian circle packings

Figure: Other integral Apollonian circle packings
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Other integral circle packings
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Figure: Guettler and Mallows’ Apollonian 3-circle packing and
Stange’s Q[

√
−2]-Apollonian packing
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Figure: Guettler and Mallows’ Apollonian 3-circle packing and
Stange’s Q[

√
−2]-Apollonian packing
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Other integral circle packings

Figure: Kontorovich-Nakamura’s integral crystallographic packing
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Two basic questions

Question
Is there a law that governs the distribution of circles within a
circle packing?

Question
What integers arise as curvatures from an integral circle
packing?
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Counting circles in an Apollonian packing

Question
How many circles are there with curvatures bounded by T?

Theorem (Kontorovich-Oh, 2011)
Fix an Apollonian circle packing P, and let PT be set of circles
with curvatures < T . Then as T →∞,

#PT ∼ cPT δ,

where cP > 0 depends on P, and δ ≈ 1.305688 is the
Hausdorff dimension of P.
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Equidistribution of circles

Theorem (Oh-Shah, 2012)

Let R be any region with smooth boundary in C and PT (R) be
the set of circles in R whose curvatures are bounded by T ,
then as T →∞, #PT (R) ∼ µ(R)T δ, where µ is a constant
multiple of δ-dimensional Hausdorff measure supported on P.
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The fine scale structure

Question
Let PT be the set of circles with radius > 1/T (curvature < T).
How many circles are within the distance 10/T of a random
circle? Is there a limit as T →∞?
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Pair correlation

Definition
The pair correlation function PT (s) is defined as

PT (s) =
1

#PT

∑
C1∈PT

∑
C2∈PT
C2 6=C1

1{d(C1,C2) < s/T},

where d(C1,C2) is the Euclidean distance of the two circles
C1,C2.

Question
Is there a limit for PT as T →∞? If so what are some
properties of the limiting pair correlation?
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Experimental results from IGL, Spring 2017

Groups members: Weiru Chen, Mo Jiao, Calvin Kessler, Amita
Malik and Xin Zhang. Work to appear at Experimental Math.

Figure: The plot for PT (s) with different T ’s
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Experimental results from IGL

Figure: Pair correlation for the whole plane, half plane and the first
quadrant
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Experimental results from IGL

Figure: Pair correlation for different Apollonian gaskets
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Experimental results from IGL

Figure: The empirical derivative P ′
T (s), with different T taken
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Limiting pair correlation

Theorem (limiting pair correlation, Z, 2017)

There exists a continuously differentiable function P, supported
on [c,∞) for some c > 0, such that

lim
t→∞

PT (s) = P(s).
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Applications of pair correlation

Figure: Arrangements of glass atoms vs metal atoms

Figure: Pair correlations of glass atoms and metal atoms
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Applications of pair correlation

Kirkwood-Buff solution theory: for a can of gas,
pair correlation of molecules =⇒ pressure, potential
energy, etc.

Astronomers use pair correlation to predict the likelihood of
finding one galaxy near another galaxy.
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Fine scale statistics in deterministic sequences

Dramatic connection to number theory
[Dyson-Montgomery]: (Empirically) The pair correlation of
non trivial zeros of the Riemann zeta function agrees with
the pair correlation of the eigenvalues from a random
Hermitian matrix.

Fractional parts of {
√

n,n ∈ Z+} (Elkies-McMullen)
Farey sequences and generalizations (Hall, Boca, Cobeli,
Zaharescu, Athreya, Heersink, Chauby, Malik, etc.)
Euclidean and hyperbolic lattice points
(Boca-Popa-Zaharescu, Kelmer-Kontorovich,
Marklof-Vinogradov, Rudnick-Z)
Closed trajectories of translation surfaces (Athreya-Chaika,
Athreya-Chaika-Leliévre, Uyanik-Work)
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The symmetry group

There exists a discrete group Γ < PSL(2,C) whose limit set
Λ(Γ) = P.

Figure: A fundamental domain of Γ and a point orbit of Γ
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Subgroups of PSL(2,C)

Let H3 = {x + y i + r j : x , y ∈ R, r ∈ R+}.

Define <(x + y i + r j) = x + y i ,=(x + y i + r j) = r .
Let X0 be the vector based at j pointing downward.

A =:

{
at =

(
T−

1
2 0

0 T
1
2

)
: T ∈ R+

}
.

M =:

{
mθ =

(
e

θ
2 i 0
0 e−

θ
2 i

)
: θ ∈ [0,2π)

}
.

N =:

{
nz =

(
1 z
0 1

)
: z ∈ C

}
.

H := SU(1,1) ∪ SU(1,1)

(
0 −1
1 0

)
, where

SU(1,1) =

{(
ξ η
η̄ ξ̄

)
: ξ, η ∈ C, |ξ|2 − |η|2 = 1

}
.
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The Patterson-Sullivan measure

Definition
The Patterson-Sullivan measure ν is the weak limit as s → δ+

of the family of measures

νj,s :=
1∑

γ∈Γ e−sd(j,γj)

∑
γ∈Γ

e−sd(j,γj)δγj ,

where δγj is the Dirac delta measure supported at the point γj .
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Conformal measures on T1(H3)

T1(H3) 7−→ ∂H3 × ∂H3/{diagonal} × R.
u 7−→ (u+,u−, βu−(j , π(u)),
where u−,u+ are the starting and ending points of u, π(u)
is the base point of u in H3, and βu− is the Buzeman
function.

Burger-Roblin measure mBR:
Lebesgue × Patterson-Sullivan ×mHaar

R
Bowen-Margulis-Sullivan measure mBMS:
Patterson-Sullivan × Patterson-Sullivan ×mHaar

R

Identify T1(H3) = PSL(2,C)/M. These measures are can
be lifted to right M-invariant measure on PSL(2,C).
These measures are Γ invariant, so descend to measures
on Γ\T1(H3).
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The map q

Let S be the hemisphere based at the bounding circle, and let
g ∈ PSL(2,C). Define

q(g) :=

{
the apex of g(S), if∞ 6∈ g(∂S)

∞, otherwise

The set of centers C from P are the projection of apices of
hemispheres based on circles from P
The set of centers CT from PT are the projection of apices
with height > 1/T .

C = {<(q(γ)) : γ ∈ Γ/ΓS}
CT = {<(q(γ)) : γ ∈ Γ/ΓS,=(q(γ)) > 1/T}
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A detailed version of the limiting pair correlation

Theorem (limiting pair correlation, Z, 2017)

The pair correlation density P ′ is explicitly given by

P ′(s) =

δ

2µPS
H (ΓH\H)

∫
h∈ΓH\H

∑
γ∈γH\(Γ−ΓH )

q(h−1γ−1)∈Vs

|(<(q(h−1γ−1))|δ

sδ+1 dµPS
H (h),

where Vs = {z + hj : |z| < s,h > 1} ∪ {z + hi : |z|h < s,h ≤ 1},
and µPS

H is the pullback of the visual map H → Ĉ : h→ h(X0).
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Convergence of correlations

Let E ⊂ C be an open set with ∂E piecewise smooth, and
Ω =

∏
1≤i≤k Ωi ⊂ Ck , where Ωi ,1 ≤ i ≤ k are bounded open

subset of C with piecewise smooth boundaries.

Let r = 〈r1, · · · , rk 〉 be a multi-index, where ri ∈ Z≥0, and at
least one ri > 0.
For z ∈ C, let

BT (Ωi , z) := (
1
T

Ωi + z) ∩ CT

Want to understand∫
C

∏
1≤i≤k

1{#BT (Ωi , z) = ri}χE (z)dz

as T →∞.
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Convergence of correlations

Define a function on PSL(2,C):

FΩ,r (g) :=
∏

1≤i≤k

1{#(q(g−1Γ/ΓS) ∩ Ω∗i = ri},

where Ω∗i ,1 ≤ i ≤ k are the “infinite chimneys” based at Ωi :

Ω∗i := {z + r j : z ∈ Ωi , r ∈ (1,∞)}.

Then∫
C

∏
1≤i≤k

1{#BT (Ωi , z) = ri}χE (z)dz =

∫
C

FΩ,r (nzaT )χE (z)dz
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Equidistribution of expanding horospheres

Theorem (Mohammadi-Oh, JEMS, 2015)

Let f ∈ C∞(N) and Ψ ∈ C∞c (Γ\G). We have

lim
T→∞

T 2−δ
∫

N
f (n)Ψ(naT )dn =

mBR(Ψ)µPS
N (f )

mBMS(Γ\G)
.
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A remark

Mohammadi-Oh does not hold for certain non-compactly
supported test functions.
E.G., Choose (f ,Ψ) such that Supp(f ) ⊂ L and
Supp(Ψ) ⊂ a small neighborhood of ∪∞i=1 aiL.
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A hierarchy lemma

Our contention: FΩ,r is neither continuous nor compactly
supported.

For two bounded functions Ψ1,Ψ2 on Γ\G, let D(Ψ1),D(Ψ2) be
the closure of the discontinuities of Ψ1,Ψ2.

Lemma
If (f ,Ψ1) satisfies Mohammadi-Oh, Ψ2 � Ψ1, and
mBR(D(Ψ1)),mBR(D(Ψ2)) = 0, then (f ,Ψ2) satisfies
Mohammadi-Oh.
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Convergence of correlations

Certain pair (χE ,Ψ0) relates to the counting of circles. By
Oh-Shah’s theorem on counting circles, (χE ,Ψ0) satisfies
Mohammadi-Oh.
FΩ,r � Ψ0.
D(Ψ0),D(FΩ,r ) are contained in some algebraic
subvarieties of Γ\G of codimension > 1, so
mBR(D(Ψ0)),mBR(D(FΩ,r )) = 0

Proposition
We have

lim
T→∞

T 2−δ
∫
C

FΩ,r (nzaT )χE (z)dz =
mBR(FΩ,r )w(E)

mBMS(Γ\G)
,

where w is the pullback measure of µPS
N under the map z → nz .
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Growth of the limiting pair correlation

Question (Curt McMullen)
Can one say something about the growth of the limiting pair
correlation P?

Empirically, P(s) ∼ 0.072sδ.

Xin Zhang Pair correlation in Apollonian gaskets



Growth of the limiting pair correlation

Question (Curt McMullen)
Can one say something about the growth of the limiting pair
correlation P?

Empirically, P(s) ∼ 0.072sδ.

Xin Zhang Pair correlation in Apollonian gaskets



Electrostatic energy

The electrostatic energy function G(T ) is defined by

G(T ) :=
1

T 2δ

∑
C1,C2∈CT

p 6=q

1
d(C1,C2)

.
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Fractal cosmology?

Question
What can one say about the fine scale structure of a spiral
galaxy?

Figure: Image on the left depicts a sub-region of a Julia set; image on
the right is the famous Grand Spiral Galaxy (NGC 1232)
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Thank you!
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