Pair correlation in Apollonian gaskets

Xin Zhang

12/04/2017

Xin Zhang Pair correlation in Apollonian gaskets

・ 同 ト ・ ヨ ト ・ ヨ ト …

2

Construction of an Apollonian Circle Packing

▲ 臣 ▶ ▲ 臣 ▶ …

æ

Construction of an Apollonian Circle Packing

Xin Zhang Pair correlation in Apollonian gaskets

Construction of an Apollonian Circle Packing

Figure: Construction of an Apollonian circle packing

프 에 에 프 어 - -

ъ

An Apollonian circle packing

Figure: An Apollonian circle packing

Integral Apollonian circle packings

Figure: Other integral Apollonian circle packings

프 > - 프 > · ·

э

Other integral circle packings

ヨンドヨン

æ

Other integral circle packings

Figure: Guettler and Mallows' Apollonian 3-circle packing and Stange's $\mathbb{Q}[\sqrt{-2}]\text{-Apollonian packing}$

Other integral circle packings

Figure: Kontorovich-Nakamura's integral crystallographic packing

Question

Is there a law that governs the distribution of circles within a circle packing?

ヘロン 人間 とくほ とくほ とう

2

Question

Is there a law that governs the distribution of circles within a circle packing?

Question

What integers arise as curvatures from an integral circle packing?

ヘロン 人間 とくほ とくほ とう

ъ

Counting circles in an Apollonian packing

Question

How many circles are there with curvatures bounded by T?

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Counting circles in an Apollonian packing

Question

How many circles are there with curvatures bounded by T?

Theorem (Kontorovich-Oh, 2011)

Fix an Apollonian circle packing \mathcal{P} , and let \mathcal{P}_T be set of circles with curvatures < T. Then as $T \to \infty$,

$$\#\mathcal{P}_T\sim c_{\mathcal{P}}T^{\delta},$$

where $c_{\mathcal{P}} > 0$ depends on \mathcal{P} , and $\delta \approx 1.305688$ is the Hausdorff dimension of \mathcal{P} .

★ 문 ► ★ 문 ►

Theorem (Oh-Shah, 2012)

Let \mathcal{R} be any region with smooth boundary in \mathbb{C} and $\mathcal{P}_T(\mathcal{R})$ be the set of circles in \mathcal{R} whose curvatures are bounded by T, then as $T \to \infty$, $\#\mathcal{P}_T(\mathcal{R}) \sim \mu(\mathcal{R})T^{\delta}$, where μ is a constant multiple of δ -dimensional Hausdorff measure supported on $\overline{\mathcal{P}}$.

The fine scale structure

Question

Let \mathcal{P}_T be the set of circles with radius > 1/T (curvature < T). How many circles are within the distance 10/T of a random circle? Is there a limit as $T \to \infty$?

Definition

The pair correlation function $P_T(s)$ is defined as

$$P_T(s) = \frac{1}{\# \mathcal{P}_T} \sum_{C_1 \in \mathcal{P}_T} \sum_{\substack{C_2 \in \mathcal{P}_T \\ C_2 \neq C_1}} \mathbf{1} \{ d(C_1, C_2) < s/T \},$$

where $d(C_1, C_2)$ is the Euclidean distance of the two circles C_1, C_2 .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Definition

The pair correlation function $P_T(s)$ is defined as

$$P_T(s) = rac{1}{\# \mathcal{P}_T} \sum_{C_1 \in \mathcal{P}_T} \sum_{\substack{C_2 \in \mathcal{P}_T \ C_2 \neq C_1}} \mathbf{1} \{ d(C_1, C_2) < s/T \},$$

where $d(C_1, C_2)$ is the Euclidean distance of the two circles C_1, C_2 .

Question

Is there a limit for P_T as $T \to \infty$? If so what are some properties of the limiting pair correlation?

ヘロン 人間 とくほ とくほ とう

ъ

Experimental results from IGL, Spring 2017

Groups members: Weiru Chen, Mo Jiao, Calvin Kessler, Amita Malik and Xin Zhang. Work to appear at *Experimental Math*.

Figure: The plot for $P_T(s)$ with different T's

< 🗇 🕨

Experimental results from IGL

Figure: Pair correlation for the whole plane, half plane and the first quadrant

くロト (過) (目) (日)

æ

Experimental results from IGL

Figure: Pair correlation for different Apollonian gaskets

→ Ξ → < Ξ →</p>

< 🗇 🕨

æ

Experimental results from IGL

Figure: The empirical derivative $P'_{T}(s)$, with different T taken

ъ

Theorem (limiting pair correlation, Z, 2017)

There exists a continuously differentiable function P, supported on $[c, \infty)$ for some c > 0, such that

$$\lim_{t\to\infty} P_T(s) = P(s).$$

ъ

・ 同 ト ・ ヨ ト ・ ヨ ト …

Applications of pair correlation

Figure: Arrangements of glass atoms vs metal atoms

< < >> < </>

.⊒...>

Applications of pair correlation

Figure: Arrangements of glass atoms vs metal atoms

Figure: Pair correlations of glass atoms and metal atoms

(画) (目) (日)

ъ

- Astronomers use pair correlation to predict the likelihood of finding one galaxy near another galaxy.

通 と く ヨ と く ヨ と

 Dramatic connection to number theory [Dyson-Montgomery]: (Empirically) The pair correlation of non trivial zeros of the Riemann zeta function agrees with the pair correlation of the eigenvalues from a random Hermitian matrix.

(雪) (ヨ) (ヨ)

- Dramatic connection to number theory [Dyson-Montgomery]: (Empirically) The pair correlation of non trivial zeros of the Riemann zeta function agrees with the pair correlation of the eigenvalues from a random Hermitian matrix.
- Fractional parts of $\{\sqrt{n}, n \in \mathbb{Z}^+\}$ (Elkies-McMullen)

(日本) (日本) (日本)

- Dramatic connection to number theory [Dyson-Montgomery]: (Empirically) The pair correlation of non trivial zeros of the Riemann zeta function agrees with the pair correlation of the eigenvalues from a random Hermitian matrix.
- Fractional parts of $\{\sqrt{n}, n \in \mathbb{Z}^+\}$ (Elkies-McMullen)
- Farey sequences and generalizations (Hall, Boca, Cobeli, Zaharescu, Athreya, Heersink, Chauby, Malik, etc.)

(雪) (ヨ) (ヨ)

- Dramatic connection to number theory [Dyson-Montgomery]: (Empirically) The pair correlation of non trivial zeros of the Riemann zeta function agrees with the pair correlation of the eigenvalues from a random Hermitian matrix.
- Fractional parts of $\{\sqrt{n}, n \in \mathbb{Z}^+\}$ (Elkies-McMullen)
- Farey sequences and generalizations (Hall, Boca, Cobeli, Zaharescu, Athreya, Heersink, Chauby, Malik, etc.)
- Euclidean and hyperbolic lattice points (Boca-Popa-Zaharescu, Kelmer-Kontorovich, Marklof-Vinogradov, Rudnick-Z)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Dramatic connection to number theory [Dyson-Montgomery]: (Empirically) The pair correlation of non trivial zeros of the Riemann zeta function agrees with the pair correlation of the eigenvalues from a random Hermitian matrix.
- Fractional parts of $\{\sqrt{n}, n \in \mathbb{Z}^+\}$ (Elkies-McMullen)
- Farey sequences and generalizations (Hall, Boca, Cobeli, Zaharescu, Athreya, Heersink, Chauby, Malik, etc.)
- Euclidean and hyperbolic lattice points (Boca-Popa-Zaharescu, Kelmer-Kontorovich, Marklof-Vinogradov, Rudnick-Z)
- Closed trajectories of translation surfaces (Athreya-Chaika, Athreya-Chaika-Leliévre, Uyanik-Work)

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- Dramatic connection to number theory [Dyson-Montgomery]: (Empirically) The pair correlation of non trivial zeros of the Riemann zeta function agrees with the pair correlation of the eigenvalues from a random Hermitian matrix.
- Fractional parts of $\{\sqrt{n}, n \in \mathbb{Z}^+\}$ (Elkies-McMullen)
- Farey sequences and generalizations (Hall, Boca, Cobeli, Zaharescu, Athreya, Heersink, Chauby, Malik, etc.)
- Euclidean and hyperbolic lattice points (Boca-Popa-Zaharescu, Kelmer-Kontorovich, Marklof-Vinogradov, Rudnick-Z)
- Closed trajectories of translation surfaces (Athreya-Chaika, Athreya-Chaika-Leliévre, Uyanik-Work)

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

The symmetry group

There exists a discrete group $\Gamma < PSL(2, \mathbb{C})$ whose limit set $\Lambda(\Gamma) = \overline{\mathcal{P}}$.

Figure: A fundamental domain of Γ and a point orbit of Γ

ヘロト 人間 ト ヘヨト ヘヨト

э

Let $\mathbb{H}^3 = \{x + y\mathbf{i} + r\mathbf{j} : x, y \in \mathbb{R}, r \in \mathbb{R}^+\}.$

Xin Zhang Pair correlation in Apollonian gaskets

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Let
$$\mathbb{H}^3 = \{x + y\mathbf{i} + r\mathbf{j} : x, y \in \mathbb{R}, r \in \mathbb{R}^+\}.$$

Define $\Re(x + y\mathbf{i} + r\mathbf{j}) = x + y\mathbf{i}, \Im(x + y\mathbf{i} + r\mathbf{j}) = r.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Let $\mathbb{H}^3 = \{x + y\mathbf{i} + r\mathbf{j} : x, y \in \mathbb{R}, r \in \mathbb{R}^+\}$. Define $\Re(x + y\mathbf{i} + r\mathbf{j}) = x + y\mathbf{i}, \Im(x + y\mathbf{i} + r\mathbf{j}) = r$. Let X_0 be the vector based at \mathbf{j} pointing downward.

Let $\mathbb{H}^3 = \{x + y\mathbf{i} + r\mathbf{j} : x, y \in \mathbb{R}, r \in \mathbb{R}^+\}$. Define $\Re(x + y\mathbf{i} + r\mathbf{j}) = x + y\mathbf{i}, \Im(x + y\mathbf{i} + r\mathbf{j}) = r$. Let X_0 be the vector based at \mathbf{j} pointing downward.

•
$$A =: \left\{ a_t = \begin{pmatrix} T^{-\frac{1}{2}} & 0 \\ 0 & T^{\frac{1}{2}} \end{pmatrix} : T \in \mathbb{R}^+ \right\}.$$

Let $\mathbb{H}^3 = \{x + y\mathbf{i} + r\mathbf{j} : x, y \in \mathbb{R}, r \in \mathbb{R}^+\}$. Define $\Re(x + y\mathbf{i} + r\mathbf{j}) = x + y\mathbf{i}, \Im(x + y\mathbf{i} + r\mathbf{j}) = r$. Let X_0 be the vector based at \mathbf{j} pointing downward.

•
$$A =: \left\{ a_t = \begin{pmatrix} T^{-\frac{1}{2}} & 0\\ 0 & T^{\frac{1}{2}} \end{pmatrix} : T \in \mathbb{R}^+ \right\}.$$

• $M =: \left\{ m_\theta = \begin{pmatrix} e^{\frac{\theta}{2}i} & 0\\ 0 & e^{-\frac{\theta}{2}i} \end{pmatrix} : \theta \in [0, 2\pi) \right\}.$

Let $\mathbb{H}^3 = \{x + y\mathbf{i} + r\mathbf{j} : x, y \in \mathbb{R}, r \in \mathbb{R}^+\}$. Define $\Re(x + y\mathbf{i} + r\mathbf{j}) = x + y\mathbf{i}, \Im(x + y\mathbf{i} + r\mathbf{j}) = r$. Let X_0 be the vector based at \mathbf{j} pointing downward.

•
$$A =: \left\{ a_t = \begin{pmatrix} T^{-\frac{1}{2}} & 0\\ 0 & T^{\frac{1}{2}} \end{pmatrix} : T \in \mathbb{R}^+ \right\}.$$

• $M =: \left\{ m_\theta = \begin{pmatrix} e^{\frac{\theta}{2}i} & 0\\ 0 & e^{-\frac{\theta}{2}i} \end{pmatrix} : \theta \in [0, 2\pi) \right\}.$
• $N =: \left\{ n_z = \begin{pmatrix} 1 & z\\ 0 & 1 \end{pmatrix} : z \in \mathbb{C} \right\}.$

Let $\mathbb{H}^3 = \{x + y\mathbf{i} + r\mathbf{j} : x, y \in \mathbb{R}, r \in \mathbb{R}^+\}$. Define $\Re(x + y\mathbf{i} + r\mathbf{j}) = x + y\mathbf{i}, \Im(x + y\mathbf{i} + r\mathbf{j}) = r$. Let X_0 be the vector based at \mathbf{j} pointing downward.

•
$$A =: \left\{ a_t = \begin{pmatrix} T^{-\frac{1}{2}} & 0\\ 0 & T^{\frac{1}{2}} \end{pmatrix} : T \in \mathbb{R}^+ \right\}.$$

• $M =: \left\{ m_{\theta} = \begin{pmatrix} e^{\frac{\theta}{2}i} & 0\\ 0 & e^{-\frac{\theta}{2}i} \end{pmatrix} : \theta \in [0, 2\pi) \right\}.$
• $N =: \left\{ n_z = \begin{pmatrix} 1 & z\\ 0 & 1 \end{pmatrix} : z \in \mathbb{C} \right\}.$
• $H := SU(1, 1) \cup SU(1, 1) \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}$, where
 $SU(1, 1) = \left\{ \begin{pmatrix} \xi & \eta\\ \bar{\eta} & \bar{\xi} \end{pmatrix} : \xi, \eta \in \mathbb{C}, |\xi|^2 - |\eta|^2 = 1 \right\}$

Definition

The Patterson-Sullivan measure ν is the weak limit as $s \rightarrow \delta^+$ of the family of measures

$$\nu_{\boldsymbol{j},\boldsymbol{s}} := \frac{1}{\sum_{\gamma \in \Gamma} e^{-sd(\boldsymbol{j},\gamma \boldsymbol{j})}} \sum_{\gamma \in \Gamma} e^{-sd(\boldsymbol{j},\gamma \boldsymbol{j})} \delta_{\gamma \boldsymbol{j}},$$

where $\delta_{\gamma j}$ is the Dirac delta measure supported at the point γj .

ъ

・ 同 ト ・ ヨ ト ・ ヨ ト …

T¹(ℍ³) → ∂ℍ³ × ∂ℍ³/{diagonal} × ℝ.
 u → (u⁺, u⁻, β_{u⁻}(j, π(u)),
 where u⁻, u⁺ are the starting and ending points of u, π(u) is the base point of u in ℍ³, and β_{u⁻} is the Buzeman function.

通 とく ヨ とく ヨ とう

- T¹(ℍ³) → ∂ℍ³ × ∂ℍ³/{diagonal} × ℝ.
 u → (u⁺, u⁻, β_{u⁻}(j, π(u)),
 where u⁻, u⁺ are the starting and ending points of u, π(u) is the base point of u in ℍ³, and β_{u⁻} is the Buzeman function.
- Burger-Roblin measure m^{BR}: Lebesgue × Patterson-Sullivan × m^{Haar}_ℝ

通 とう ぼう うきょう

- $T^{1}(\mathbb{H}^{3}) \mapsto \partial \mathbb{H}^{3} \times \partial \mathbb{H}^{3} / \{ diagonal \} \times \mathbb{R}.$ $u \mapsto (u^{+}, u^{-}, \beta_{u^{-}}(j, \pi(u)),$ where u^{-}, u^{+} are the starting and ending points of $u, \pi(u)$ is the base point of u in \mathbb{H}^{3} , and $\beta_{u^{-}}$ is the Buzeman function.
- Burger-Roblin measure m^{BR}: Lebesgue × Patterson-Sullivan × m^{Haar}_ℝ
- Bowen-Margulis-Sullivan measure m^{BMS} : Patterson-Sullivan × Patterson-Sullivan × $m_{\mathbb{R}}^{\text{Haar}}$

通 とくほ とくほ とう

- T¹(ℍ³) → ∂ℍ³ × ∂ℍ³/{diagonal} × ℝ.
 u → (u⁺, u⁻, β_{u⁻}(j, π(u)),
 where u⁻, u⁺ are the starting and ending points of u, π(u) is the base point of u in ℍ³, and β_{u⁻} is the Buzeman function.
- Burger-Roblin measure m^{BR}: Lebesgue × Patterson-Sullivan × m^{Haar}_ℝ
- Bowen-Margulis-Sullivan measure m^{BMS} : Patterson-Sullivan × Patterson-Sullivan × $m_{\mathbb{R}}^{\text{Haar}}$
- Identify T¹(ℍ³) = PSL(2, ℂ)/M. These measures are can be lifted to right M-invariant measure on PSL(2, ℂ).

(日本) (日本) (日本)

- T¹(H³) → ∂H³ × ∂H³/{diagonal} × ℝ.
 u → (u⁺, u⁻, β_{u⁻}(j, π(u)),
 where u⁻, u⁺ are the starting and ending points of u, π(u) is the base point of u in H³, and β_{u⁻} is the Buzeman function.
- Burger-Roblin measure m^{BR}: Lebesgue × Patterson-Sullivan ×m^{Haar}_ℝ
- Bowen-Margulis-Sullivan measure m^{BMS} : Patterson-Sullivan × Patterson-Sullivan × $m_{\mathbb{R}}^{\text{Haar}}$
- Identify T¹(ℍ³) = PSL(2, ℂ)/M. These measures are can be lifted to right M-invariant measure on PSL(2, ℂ).
- These measures are Γ invariant, so descend to measures on $\Gamma \backslash T^1(\mathbb{H}^3).$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

The map **q**

Let *S* be the hemisphere based at the bounding circle, and let $g \in PSL(2, \mathbb{C})$. Define

$$oldsymbol{q}(g) := egin{cases} ext{the apex of } g(S), & ext{if } \infty
otin g(\partial S) \ \infty, & ext{otherwise} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let *S* be the hemisphere based at the bounding circle, and let $g \in PSL(2, \mathbb{C})$. Define

$$oldsymbol{q}(g) := egin{cases} ext{the apex of } g(\mathcal{S}), & ext{if } \infty
ot\in g(\partial \mathcal{S}) \ \infty, & ext{otherwise} \end{cases}$$

- The set of centers C from P are the projection of apices of hemispheres based on circles from P
- The set of centers C_T from P_T are the projection of apices with height > 1/T.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let *S* be the hemisphere based at the bounding circle, and let $g \in PSL(2, \mathbb{C})$. Define

$$oldsymbol{q}(g) := egin{cases} ext{the apex of } g(S), & ext{if } \infty
ot\in g(\partial S) \ \infty, & ext{otherwise} \end{cases}$$

- The set of centers C from P are the projection of apices of hemispheres based on circles from P
- The set of centers C_T from P_T are the projection of apices with height > 1/T.

•
$$C = \{ \Re(\boldsymbol{q}(\gamma)) : \gamma \in \Gamma/\Gamma_{\mathcal{S}} \}$$

•
$$C_T = \{ \Re(\boldsymbol{q}(\gamma)) : \gamma \in \Gamma/\Gamma_{\mathcal{S}}, \Im(\boldsymbol{q}(\gamma)) > 1/T \}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A detailed version of the limiting pair correlation

Theorem (limiting pair correlation, Z, 2017)

The pair correlation density P' is explicitly given by

$$\begin{split} P'(s) &= \\ \frac{\delta}{2\mu_{H}^{\mathsf{PS}}(\Gamma_{H} \setminus H)} \int_{h \in \Gamma_{H} \setminus H} \sum_{\substack{\gamma \in \gamma_{H} \setminus (\Gamma - \Gamma_{H}) \\ \boldsymbol{q}(h^{-1}\gamma^{-1}) \in V_{s}}} \frac{|(\Re(\boldsymbol{q}(h^{-1}\gamma^{-1}))|^{\delta} d\mu_{H}^{\mathsf{PS}}(h), \end{split}$$

where $V_s = \{z + h\mathbf{j} : |z| < s, h > 1\} \cup \{z + h_i : \frac{|z|}{h} < s, h \le 1\}$, and μ_H^{PS} is the pullback of the visual map $H \to \widehat{\mathbb{C}} : h \to h(X_0)$.

通 とう ほ とう ほ とう

Let $E \subset \mathbb{C}$ be an open set with ∂E piecewise smooth, and $\Omega = \prod_{1 \leq i \leq k} \Omega_i \subset \mathbb{C}^k$, where $\Omega_i, 1 \leq i \leq k$ are bounded open subset of \mathcal{C} with piecewise smooth boundaries.

通 とくほ とくほ とう

Let $E \subset \mathbb{C}$ be an open set with ∂E piecewise smooth, and $\Omega = \prod_{1 \leq i \leq k} \Omega_i \subset \mathbb{C}^k$, where $\Omega_i, 1 \leq i \leq k$ are bounded open subset of \mathcal{C} with piecewise smooth boundaries. Let $\mathbf{r} = \langle r_1, \dots, r_k \rangle$ be a multi-index, where $r_i \in \mathbb{Z}^{\geq 0}$, and at least one $r_i > 0$. For $z \in \mathbb{C}$, let

$${\mathcal B}_T(\Omega_i,z):=(rac{1}{T}\Omega_i+z)\cap {\mathcal C}_T$$

通 とく ヨ とく ヨ とう

Let $E \subset \mathbb{C}$ be an open set with ∂E piecewise smooth, and $\Omega = \prod_{1 \leq i \leq k} \Omega_i \subset \mathbb{C}^k$, where $\Omega_i, 1 \leq i \leq k$ are bounded open subset of \overline{C} with piecewise smooth boundaries. Let $\mathbf{r} = \langle r_1, \dots, r_k \rangle$ be a multi-index, where $r_i \in \mathbb{Z}^{\geq 0}$, and at least one $r_i > 0$. For $z \in \mathbb{C}$, let

$$\mathcal{B}_T(\Omega_i, z) := (\frac{1}{T}\Omega_i + z) \cap \mathcal{C}_T$$

Want to understand

$$\int_{\mathbb{C}} \prod_{1 \leq i \leq k} \mathbf{1} \{ \# \mathcal{B}_T(\Omega_i, z) = r_i \} \chi_E(z) dz$$

as $T \to \infty$.

Define a function on $PSL(2, \mathbb{C})$:

$$F_{\boldsymbol{\Omega},\boldsymbol{r}}(\boldsymbol{g}) := \prod_{1 \leq i \leq k} \mathbf{1} \{ \#(\boldsymbol{g}(\boldsymbol{g}^{-1} \boldsymbol{\Gamma}/\boldsymbol{\Gamma}_{\mathcal{S}}) \cap \boldsymbol{\Omega}_{i}^{*} = \boldsymbol{r}_{i} \},\$$

where Ω_i^* , $1 \le i \le k$ are the "infinite chimneys" based at Ω_i :

$$\Omega_i^* := \{ z + r \mathbf{j} : z \in \Omega_i, r \in (1, \infty) \}.$$

Then

$$\int_{\mathbb{C}} \prod_{1 \leq i \leq k} \mathbf{1}\{\# \mathcal{B}_T(\Omega_i, z) = r_i\} \chi_E(z) dz = \int_{\mathbb{C}} F_{\Omega, r}(n_z a_T) \chi_E(z) dz$$

(個) (日) (日) (日)

Equidistribution of expanding horospheres

Theorem (Mohammadi-Oh, JEMS, 2015)

Let $f \in C^{\infty}(N)$ and $\Psi \in C^{\infty}_{c}(\Gamma \backslash G)$. We have

$$\lim_{T \to \infty} T^{2-\delta} \int_N f(n) \Psi(na_T) dn = \frac{m^{\mathsf{BR}}(\Psi) \mu_N^{\mathsf{PS}}(f)}{m^{\mathsf{BMS}}(\Gamma \backslash G)}.$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

A remark

Mohammadi-Oh does not hold for certain non-compactly supported test functions.

E.G., Choose (f, Ψ) such that $Supp(f) \subset L$ and $Supp(\Psi) \subset a$ small neighborhood of $\bigcup_{i=1}^{\infty} a_i L$.

Our contention: $F_{\Omega,r}$ is neither continuous nor compactly supported.

ヘロン 人間 とくほとく ほとう

2

Our contention: $F_{\Omega,r}$ is neither continuous nor compactly supported.

For two bounded functions Ψ_1, Ψ_2 on $\Gamma \setminus G$, let $\mathcal{D}(\Psi_1), \mathcal{D}(\Psi_2)$ be the closure of the discontinuities of Ψ_1, Ψ_2 .

Lemma

If (f, Ψ_1) satisfies Mohammadi-Oh, $\Psi_2 \ll \Psi_1$, and $m^{BR}(\mathcal{D}(\Psi_1)), m^{BR}(\mathcal{D}(\Psi_2)) = 0$, then (f, Ψ_2) satisfies Mohammadi-Oh.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Certain pair (χ_E, Ψ₀) relates to the counting of circles. By Oh-Shah's theorem on counting circles, (χ_E, Ψ₀) satisfies Mohammadi-Oh.
- $F_{\Omega,r} \ll \Psi_0$.
- D(Ψ₀), D(F_{Ω,r}) are contained in some algebraic subvarieties of Γ\G of codimension > 1, so m^{BR}(D(Ψ₀)), m^{BR}(D(F_{Ω,r})) = 0

Proposition

We have

$$\lim_{T\to\infty} T^{2-\delta} \int_{\mathbb{C}} F_{\Omega,r}(n_z a_T) \chi_E(z) dz = \frac{m^{BR}(F_{\Omega,r})w(E)}{m^{BMS}(\Gamma \setminus G)},$$

where w is the pullback measure of μ_N^{PS} under the map $z \to n_z$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Question (Curt McMullen)

Can one say something about the growth of the limiting pair correlation P?

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Question (Curt McMullen)

Can one say something about the growth of the limiting pair correlation P?

Empirically, $P(s) \sim 0.072 s^{\delta}$.

< < >> < </>

< ∃ > <

Electrostatic energy

The electrostatic energy function G(T) is defined by

$$G(T) := rac{1}{T^{2\delta}} \sum_{\substack{C_1, C_2 \in \mathcal{C}_T \ p
eq q}} rac{1}{d(C_1, C_2)}.$$

Xin Zhang Pair correlation in Apollonian gaskets

æ

Fractal cosmology?

Question

What can one say about the fine scale structure of a spiral galaxy?

Figure: Image on the left depicts a sub-region of a Julia set; image on the right is the famous Grand Spiral Galaxy (NGC 1232)

Thank you!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@