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Construction of an Apollonian Circle Packing

Figure: Construction of an Apollonian circle packing
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An Apollonian circle packing

Figure: An Apollonian circle packing
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Integral Apollonian circle packings

Figure: Other integral Apollonian circle packings

Xin Zhang Pair correlation in Apollonian gaskets



n
o)
£
=
&)
©
Q
o
O
=
o
©
S
(e))
o)
9
£
S
o)
c
-
@)

2
2
[Z2]
©
o
c
]
=
S
]
Qo
<
=
c
S
B
©
£
[s}
o
S
o




Other integral circle packings

Figure: Guettler and Mallows’ Apollonian 3-circle packing and
Stange’s Q[v/—2]-Apollonian packing
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Other integral circle packings

Figure: Kontorovich-Nakamura’s integral crystallographic packing
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Two basic questions

Is there a law that governs the distribution of circles within a
circle packing?
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Two basic questions

Is there a law that governs the distribution of circles within a
circle packing?

Question

What integers arise as curvatures from an integral circle
packing?
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Counting circles in an Apollonian packing

How many circles are there with curvatures bounded by T ?
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Counting circles in an Apollonian packing

How many circles are there with curvatures bounded by T ?

Theorem (Kontorovich-Oh, 2011)

Fix an Apollonian circle packing P, and let Pt be set of circles
with curvatures < T. Thenas T — oo,

#Pr ~cpT’,

where cp > 0 depends on P, and § ~ 1.305688 is the
Hausdorff dimension of P.
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Equidistribution of circles

Theorem (Oh-Shah, 2012)

Let R be any region with smooth boundary in C and Pr(R) be
the set of circles in R whose curvatures are bounded by T,
then as T — oo, #P1(R) ~ u(R) T, where  is a constant
multiple of §-dimensional Hausdorff measure supported on P.
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The fine scale structure

Let Pt be the set of circles with radius > 1/ T (curvature < T).
How many circles are within the distance 10/ T of a random
circle? Is there alimitas T — oo ?
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Pair correlation

The pair correlation function Pr(s) is defined as

1
Pris) = o5 2. > Wd(Ci.Co) </T},
¥ CiePr Co€Pr
Co#Cy

where d(Cy, Cy) is the Euclidean distance of the two circles
C1 ) CZ'
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Pair correlation

The pair correlation function Pr(s) is defined as

1
Pris) = o5 2. > Wd(Ci.Co) </T},
¥ CiePr Co€Pr
Co#Cy

where d(Cy, Cy) is the Euclidean distance of the two circles
C1 ) CZ'

Is there a limit for P+ as T — oo ? If so what are some
properties of the limiting pair correlation?
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Experimental results from IGL, Spring 2017

Groups members: Weiru Chen, Mo Jiao, Calvin Kessler, Amita
Malik and Xin Zhang. Work to appear at Experimental Math.
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Figure: The plot for Pr(s) with different T’s
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Experimental results from IGL

—— Full Gasket

Figure: Pair correlation for the whole plane, half plane and the first
quadrant
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Experimental results from IGL
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Figure: Pair correlation for different Apollonian gaskets
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Experimental results from IGL

— T=3000

Fyls)

Figure: The empirical derivative P7(s), with different T taken
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Limiting pair correlation

Theorem (limiting pair correlation, Z, 2017)

There exists a continuously differentiable function P, supported
on [c,o0) for some ¢ > 0, such that

tl—'>n;o Pr(s) = P(s).
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Applications of pair correlation
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Figure: Arrangements of glass atoms vs metal atoms
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Applications of pair correlation

Figure: Arrangements of glass atoms vs metal atoms

T

Figure: Pair correlations of glass atoms and metal atoms
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Applications of pair correlation

@ Kirkwood-Buff solution theory: for a can of gas,
pair correlation of molecules = pressure, potential
energy, etc.
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Applications of pair correlation

@ Kirkwood-Buff solution theory: for a can of gas,
pair correlation of molecules = pressure, potential
energy, etc.

@ Astronomers use pair correlation to predict the likelihood of
finding one galaxy near another galaxy.
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Fine scale statistics in deterministic sequences

@ Dramatic connection to number theory
[Dyson-Montgomery]: (Empirically) The pair correlation of
non trivial zeros of the Riemann zeta function agrees with
the pair correlation of the eigenvalues from a random
Hermitian matrix.
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Fine scale statistics in deterministic sequences

@ Dramatic connection to number theory
[Dyson-Montgomery]: (Empirically) The pair correlation of
non trivial zeros of the Riemann zeta function agrees with
the pair correlation of the eigenvalues from a random
Hermitian matrix.

@ Fractional parts of {\/n, n € Z*} (Elkies-McMullen)
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The symmetry group

There exists a discrete group I' < PSL(2,C) whose limit set
AT =P.

Figure: A fundamental domain of I and a point orbit of I'
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Subgroups of PSL(2, C)

LetHS = {x+yi+rj:x,y cR,re R}
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Subgroups of PSL(2, C)

LetHS = {x+yi+rj:x,y cR,re R}
Define R(x + yi+rj)=x+yi,I(x+yi+rj)=r.
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Subgroups of PSL(2, C)

LetHS = {x+yi+rj:x,y cR,re R}
Define R(x + yi+rj)=x+yi,I(x+yi+rj)=r.
Let Xp be the vector based at j pointing downward.
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Subgroups of PSL(2, C)

LetHS = {x+yi+rj:x,y cR,re R}
Define R(x + yi+rj)=x+yi,I(x+yi+rj)=r.
Let Xp be the vector based at j pointing downward.
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=
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Subgroups of PSL(2, C)
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Subgroups of PSL(2, C)

LetHS = {x+yi+rj:x,y cR,re R}
Define R(x + yi+rj)=x+yi,I(x+yi+rj)=r.
Let Xp be the vector based at j pointing downward.

_1
e A= <(a = Tz 0 :TeRT 3.
0 T

°o M= {me _ (es" e9§’> 0 [0,277)}.
o N=: {nz:<(1) f) :ze(C}.

o H:= SU(1,1)USU(1,1)(? _01),where

sutt. ) ={ (5 L) scmecid - =1},

=
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The Patterson-Sullivan measure

Definition

The Patterson-Sullivan measure v is the weak limit as s — 6+
of the family of measures

Vi« = e 54U s
1.5 Z re—sd/m)z

where §.; is the Dirac delta measure supported at the point ~j.
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Conformal measures on T' (H?®)

o T'(H®) —s OHB x OH3/{diagonal} x R.
ur— (Ut u™, By-(J, m(u)),
where u—, u™ are the starting and ending points of u, 7(u)
is the base point of v in H®, and 3,- is the Buzeman

function.
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Conformal measures on T' (H?®)

o T'(H®) — OHB x 9H®/{diagonal} x R.
ur— (ut,u™, By-(J, m(w)),
where u~, u™ are the starting and ending points of u, 7(u)
is the base point of v in H®, and 3,- is the Buzeman
function.

@ Burger-Roblin measure mBR:
Lebesgue x Patterson-Sullivan x m{aa”

@ Bowen-Margulis-Sullivan measure mBMS:
Patterson-Sullivan x Patterson-Sullivan x mHaar

e Identify T'(H®) = PSL(2,C)/M. These measures are can
be lifted to right M-invariant measure on PSL(2, C).

@ These measures are I invariant, so descend to measures
on MN\T'(H3).
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The map q

Let S be the hemisphere based at the bounding circle, and let
g € PSL(2,C). Define

the apex of g(S), if co & g(0S)
q(9) = .
0, otherwise
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The map q

Let S be the hemisphere based at the bounding circle, and let
g € PSL(2,C). Define

(0) the apex of g(S), if oo ¢ g(0S)
9.9) = 00, otherwise

@ The set of centers C from P are the projection of apices of
hemispheres based on circles from P

@ The set of centers Ct from Pr are the projection of apices
with height > 1/T.
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The map q

Let S be the hemisphere based at the bounding circle, and let
g € PSL(2,C). Define

(0) the apex of g(S), if oo ¢ g(0S)
9.9) = 00, otherwise

@ The set of centers C from P are the projection of apices of
hemispheres based on circles from P

@ The set of centers Ct from Pr are the projection of apices
with height > 1/T.

@ C={R(q(n)):yeTl/lg}
@ Cr={R(q()) v €T /Ts,3(q(v)) >1/T}
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A detailed version of the limiting pair correlation

Theorem (limiting pair correlation, Z, 2017)

The pair correlation density P’ is explicitly given by
P'(s) =

J / ((R(Gh )P | s

> dpy(h),

20> (TH\H) Jherint e, S rp s "
q(h~ "y ")eVs

where Vs = {z+ hj:|z| <s,h>1}U{z+ h;: % <s h<1},
and 1S is the pullback of the visual map H — C : h — h(X).
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Convergence of correlations

Let E C C be an open set with 9E piecewise smooth, and
Q = [[1<j<, Qi C CK, where Q;,1 < i < k are bounded open
subset of C with piecewise smooth boundaries.
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Convergence of correlations

Let E C C be an open set with 9E piecewise smooth, and
Q = [[1<j<, Qi C CK, where Q;,1 < i < k are bounded open
subset of C with piecewise smooth boundaries.

Let r = (ry,-- -, ry) be a multi-index, where r; ¢ Z=°, and at
least one r; > 0.
For z € C, let
1
BT(Q,', Z) = (?Q, + Z) NCr
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Convergence of correlations

Let E C C be an open set with 9E piecewise smooth, and
Q = [[1<j<, Qi C CK, where Q;,1 < i < k are bounded open
subset of C with piecewise smooth boundaries.

Let r = (ry,-- -, ry) be a multi-index, where r; ¢ Z=°, and at
least one r; > 0.

Forz € C, let

1
BT(Q,',Z) = (?Q,' + Z) NCr

Want to understand

[ TT 1B 2) = npe(2)dz

Ci<i<k

as T — oo.
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Convergence of correlations

Define a function on PSL(2, C):

Far(9):= [] H#(a(g 'T/Ts)nQf =},

1<i<k
where Q7,1 </ < k are the “infinite chimneys” based at Q;:
Qi ={z+rj:z€Q;,re(1,00)}.

Then

| TI 14#8r(20.2) = nbxe(@)0z = [ Fas(neane(z)oz

1<i<k
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Equidistribution of expanding horospheres

Theorem (Mohammadi-Oh, JEMS, 2015)

Let f € C°(N) and V¥ € C°(I'\G). We have

_ mPRW)upS(f)

2—0
I|m T /f V(nar)d VS (1\G)
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Mohammadi-Oh does not hold for certain non-compactly
supported test functions.

E.G., Choose (f, V) such that Supp(f) c L and

Supp(V) C a small neighborhood of U<, a;L.
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A hierarchy lemma

Our contention: Fgq [ is neither continuous nor compactly
supported.
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A hierarchy lemma

Our contention: Fgq [ is neither continuous nor compactly

supported.
For two bounded functions W1, W, on '\ G, let D(V4), D(V2) be
the closure of the discontinuities of W4, Ws.

If (f,V4) satisfies Mohammadi-Oh, Vo, < V¢, and
mBR(D(Wy)), mBR(D(W,)) = 0, then (f, V,) satisfies
Mohammadi-Oh.
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Convergence of correlations

@ Certain pair (xg, Vo) relates to the counting of circles. By
Oh-Shah’s theorem on counting circles, (xg, Vo) satisfies
Mohammadi-Oh.

o Fﬂ’r << ‘UO

@ D(Vy), D(Fgq,r) are contained in some algebraic
subvarieties of '\ G of codimension > 1, so
mPR(D(Wo)), m*R(D(Fq,r)) = 0

We have
BR
] 2§ _ m""(Fq )w(E)
Tll—r>nooT [CFQ,r(nzaT)XE(Z)dZ_ mBMS(M\G)

where w is the pullback measure of &S under the map z — n;.
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Growth of the limiting pair correlation

Question (Curt McMullen)

Can one say something about the growth of the limiting pair
correlation P?
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Growth of the limiting pair correlation

Question (Curt McMullen)

Can one say something about the growth of the limiting pair
correlation P?

Empirically, P(s) ~ 0.072s°.



Electrostatic energy

The electrostatic energy function G(T) is defined by

1 1
GT) == Y. A~
T2 o= d(Cr,C)

p#q

— Gm

[T 0a7s
Eois
0.10

4 200 400 600 800 1000
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Fractal cosmology?

What can one say about the fine scale structure of a spiral
galaxy?

Figure: Image on the left depicts a sub-region of a Julia set; image on
the right is the famous Grand Spiral Galaxy (NGC 1232)
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Thank you!
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