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Integral Apollonian circle packings

Figure: Integral Apollonian circle packings
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Integral circle packings of other conformal types

Figure: Guettler and Mallows’ Apollonian 3-circle packing and
Stange’s Q[v/—2]-Apollonian packing
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Other integral circle packings

Figure: Kontorovich-Nakamura’s integral crystallographic packing
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A basic questions

What integers arise as curvatures from an integral circle
packing?
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A brief overview of the work on Apollonian packings

Theorem (Descartes)

The curvatures k1, ko2, k3, kg from any four mutually tangent
circles in an Apollonian packing satisfy the following relation:

Q(k1, k2, K3, Ka)
_ 2 2 2 2 2 __
=2(kT + K5+ K5 + Kg) — (k1 + Ko + K3 + Ka) =0
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A brief overview of the work on Apollonian packings

Theorem (Descartes)

The curvatures k1, ko2, k3, kg from any four mutually tangent
circles in an Apollonian packing satisfy the following relation:

Q(k1, k2, K3, Ka)
_ 2 2 2 2 2 __
=2(kT + K5+ K5 + Kg) — (k1 + Ko + K3 + Ka) =0

Corollary

Fix ko, k3, k4. The two solutions mﬁ ), @) for k1 in the quadratic
equation

Q(k1, K2, k3, k4) =0
satisfies

/4;51) + HSZ) = 2(k2 + K3 + K4)

A
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A brief overview of the work on Apollonian packings

Corollary

Fix a quadruple of curvatures of four mutually tangent circles
r = (K1, ko, k3, k4). The set of curvatures K is given by
UK (A-r e, where A= (Sy, Sz, S3,S4) < Oq, and
-1 2 2 2 1 0 00
0O 1 00 2 -1 2 2
S5=1o0 01 0['% |0 0 10
0O 0 0 1 0O 0 0 1
1 0 0 O 1 00 O
01 0 O 01 0 O
$5=122 1 2" 001 o0
0 0 0 1 2 2 2 —1
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@ To understand K, a first step is to understand K (mod q)
for each g. For this purpose, it is not very convenient to
work with A, because A does not have strong
approximation property.
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@ To understand K, a first step is to understand K (mod q)
for each g. For this purpose, it is not very convenient to
work with A, because A does not have strong
approximation property.

@ Choose a spin homomorphism p : PSL(2,C) — SOgq, and
work with A = p~1 (AN SOq) C PSL(2,Z[i]), where

/(1 4 —2 242 4+3i
(e §) = (F o)+ (17 1)
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Definition

Let P be any integral Apollonian circle packings with
gcd{curvatures} = 1. A congruence class mod 24 is admissible
if it contains at least one curvature from P.
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Definition

Let P be any integral Apollonian circle packings with
gcd{curvatures} = 1. A congruence class mod 24 is admissible
if it contains at least one curvature from P.

Figure: Admissible congruence classes mod 24 are
{0,8,9,12,17,20}(mod 24)
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Theorem (Bourgain-Kontorovich)

Let P be any integral Apollonian circle packings with
gcd{curvatures} = 1. Almost every positive integer in
admissible congruence classes mod 24 is a curvature.
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Theorem (Bourgain-Kontorovich)

Let P be any integral Apollonian circle packings with
gcd{curvatures} = 1. Almost every positive integer in
admissible congruence classes mod 24 is a curvature.

Why 247
Let A(m) be the principle congruence subgroup of A of level m:

{/\e/\:)\EG) ?) mod m},thenforanyqu+,

A(24)(mod q) = SL(2,Z[i])(24)(mod q).

Xin Zhang, joint with Elena Fuchs and Kate Stange Local-global principles in circle packings



The Schmidt arrangement

0 589
6 - 8

Figure: The orbit SL(2,Z][i]) ‘R
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Consider a union of circles P from the Schmidt arrangement
maximal with respect to
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Consider a union of circles P from the Schmidt arrangement
maximal with respect to

@ P is connected.
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Consider a union of circles P from the Schmidt arrangement
maximal with respect to

@ P is connected.
@ Circles from P do not traverse.
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Consider a union of circles P from the Schmidt arrangement
maximal with respect to

@ P is connected.
@ Circles from P do not traverse.

@ There does not exist a triple of circles (Cq, Co, C3), such
that Cy lies in C3 and G lies outside Cs.
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Consider a union of circles P from the Schmidt arrangement
maximal with respect to

@ P is connected.
@ Circles from P do not traverse.

@ There does not exist a triple of circles (Cq, Co, C3), such
that Cy lies in C3 and G lies outside Cs.

Then P is an Apollonian packing, and any other integral
Apollonian packing is a Mébius transform of P by a matrix
M e SL(2,Z][i]).
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In general, one can replace Z[i] by any ring of integers Ok of
an imaginary quadratic field K (e.g. K = Q[v/—5], then
Ok = Z[v-5]). Consider the maximal set P of circles from
SL(2, Ok) satisfying:

@ P is connected.

@ Circles from P do not traverse.

@ There does not exist a triple of circles (Cy, Cs, C3), such

that Cq lies in C3 and G, lies outside Cs.
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In general, one can replace Z[i] by any ring of integers Ok of
an imaginary quadratic field K (e.g. K = Q[v/—5], then
Ok = Z[v/-5]). Consider the maximal set P of circles from
SL(2, Ok) satisfying:

@ P is connected.

@ Circles from P do not traverse.

@ There does not exist a triple of circles (Cy, Cs, C3), such

that Cq lies in C3 and G, lies outside Cs.

Then

@ P is a packing of circles with integral curvatures.
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In general, one can replace Z[i] by any ring of integers Ok of
an imaginary quadratic field K (e.g. K = Q[v/—5], then
Ok = 7Z[v/—5]). Consider the maximal set P of circles from
SL(2, Ok) satisfying:
@ P is connected.
@ Circles from P do not traverse.
@ There does not exist a triple of circles (Cy, Cs, C3), such
that Cq lies in C3 and G, lies outside Cs.
Then
@ P is a packing of circles with integral curvatures.
@ The stabilizer Ap of P is an infinite co-volume, Zariski
dense subgroup of SL(2, Ok).
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In general, one can replace Z[i] by any ring of integers Ok of
an imaginary quadratic field K (e.g. K = Q[v/—5], then
Ok = 7Z[v/—5]). Consider the maximal set P of circles from
SL(2, Ok) satisfying:
@ P is connected.
@ Circles from P do not traverse.
@ There does not exist a triple of circles (Cy, Cs, C3), such
that Cq lies in C3 and G, lies outside Cs.
Then
@ P is a packing of circles with integral curvatures.
@ The stabilizer Ap of P is an infinite co-volume, Zariski
dense subgroup of SL(2, Ok).
@ Ap contains a congruence subgroup I'p of SL(2,7Z).
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Statement of the problem

Let A be the discriminant of Ok. For any

g= <Ag Bg) € PSL(2,0k), g sends the horizontal line
Cg Dy

R+ @ to a circle of curvature

K <g (@ + ‘?)) = V—=A|Cy[? +23(CyDy)
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Statement of the problem

Let A be the discriminant of Ok. For any

g= <Ag Bg) € PSL(2,0k), g sends the horizontal line
Cg Dy

R + @ to a circle of curvature

K <g (@ + \/25» = V—=A|Cy[? +23(CyDy)

The Problem

Let A = (S) be a finitely generated subgroup of PSL(2, Ok),
and A contains a congruence subgroup I' of PSL(2,7). Let
M € PSL(2,Ok). Study the set of integers

K(MARR + Y2)) {E(M)\(@-i- YA e /\},

K==/ =\ /=2

where A is the discriminant of Ok.
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The main theorem

Theorem (Fuchs-Stange-Z)

Let IC(N) = KN [0, N]. There exists a positive integer L, such
that

#IC(N) = cN + O(N'=)
for some n > 0, where

oo #{admissible congruence classes mod L}
B L
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The main theorem

Theorem (Fuchs-Stange-Z)

Let IC(N) = KN [0, N]. There exists a positive integer L, such
that

#IC(N) = cN + O(N'=)
for some n > 0, where

_ #{admissible congruence classes mod L}

(9]
~
A

Corollary

Almost every primes in admissible congruence classes mod L
is a curvature.
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The main theorem

Theorem (Fuchs-Stange-Z)

Let IC(N) = KN [0, N]. There exists a positive integer L, such
that

#IC(N) = cN + O(N'=)
for some n > 0, where

_ #{admissible congruence classes mod L}

(9]
~
A

Corollary

Almost every primes in admissible congruence classes mod L
is a curvature.

Conjecture (Local-global conjecture)

#IC(N) = cN + O(1)
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The role of the congruence subgroup

@ A s finitely generated = A is geometrically finite.
(Tameness Theorem, Agol, Calegari-Gabai)
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The role of the congruence subgroup

@ A s finitely generated = A is geometrically finite.
(Tameness Theorem, Agol, Calegari-Gabai)

@ The critical exponent §(A) of A is greater than 1
(Bishop-Jones).
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The role of the congruence subgroup

@ A s finitely generated = A is geometrically finite.
(Tameness Theorem, Agol, Calegari-Gabai)

@ The critical exponent §(A) of A is greater than 1
(Bishop-Jones).

© A enjoys a spectral gap property.
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The role of the congruence subgroup

@ A s finitely generated = A is geometrically finite.
(Tameness Theorem, Agol, Calegari-Gabai)

@ The critical exponent §(A) of A is greater than 1
(Bishop-Jones).

© A enjoys a spectral gap property.
© Curvatures can be produced by quadratic forms.
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The role of the congruence subgroup

@ A s finitely generated = A is geometrically finite.
(Tameness Theorem, Agol, Calegari-Gabai)

@ The critical exponent §(A) of A is greater than 1
(Bishop-Jones).

© A enjoys a spectral gap property.

© Curvatures can be produced by quadratic forms.

Comment: (1) and (2) allows us to use Lax-Phillips’ Theory to
count points of A. (3) allows us to count points of A and its
congruence subgroups A(q) with uniform control on the error
terms.
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Shifted quadratic forms

Fix A € A. Let <a b
c d

SL(2,Z). A computation shows that

K <M)\ <i Z) (R + VE))
\/j

> € I, the congruence subgroup of

23(CurDuy)

= |Cyaa + Duncl? +
‘M/\ M)\| m
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Shifted quadratic forms

Fix A € A. Let <a 2

SL(2,Z). A computation shows that

w(mr (2 P) (w4 v
c d 2
V—A

Define fy(a, ¢) = |Cura+ Durcl? + M Then
fi(a, c) € K if a, c satisfies some congruence condition and
gcd(a,c) = 1.

> € I, the congruence subgroup of

23(CurDuy)
v —=A

= ‘CM,\a + DM)\C|2 +
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It is classical that

N

#({fa.0)la,c € Z,god(a.0) = 1} N{OND > (ot
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It is classical that

N

#({fa.0)la,c € Z,god(a.0) = 1} N{OND > (ot

Idea to prove the theorem: Take many such quadratic forms,
hoping to cover most of the admissible numbers from [0, N].
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Setup of the ensemble

Choose two parameters T, X, where T = NJW,X — N2, 50
that T2X% = N. Let Bt = {A € A: ||]\|| < T}, where

H (i Z) ‘ = V& + b? + ¢ + d?. Define

Rm=Y_ > 1{h(ac)=n}
AxeBr  x,y<X
ged(x,y)=1
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Setup of the ensemble

Choose two parameters T, X, where T = NJW,X — N2, 50
that T2X% = N. Let Bt = {A € A: ||]\|| < T}, where

H (i Z) ‘ = V& + b? + ¢ + d?. Define

Rim=>_ > 1h@c)=n
AxeBr  x,y<X
ged(x,y)=1
R(n) > 0 for all sufficiently large admissible numbers = The
local-global conjecture.
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We have a good understanding of the sum over R(n):

RO)=DYRmM=>"> Y 1{f(ac)=n}

nez neZ xeBr  x,y<X
ged(x,y)=1

=Y > A~#Br-cX?

AeBr  x,y<X
ged(x,y)=1
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We have a good understanding of the sum over R(n):

=> Rm=>_> > 1h(ac)=n}

nez neZ xeBr  x,y<X
ged(x,y)=1

=Y > A~#Br-cX?
AeBr  x,y<X
ged(x,y)=1
We also have good estimate for
r m
A =S Ae (7))
aq nez aq

for g small.
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The circle method

Let
R(6) = > R(n)e(nd).

nez
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The circle method

Let R
R(6) =Y _ R(n)e(nd).
neZ
Then 1
R(n)= [ R(6)e(—nb)do.
0
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The circle method

Let

R(6) = > R(n)e(nd

nez

= / 1 R(0)e(—n6)do.
0

The main contribution of the above integral comes from 9, the
union of small neighborhoods of é’ with g < Qp, where  is a
small power of T (recall T is a small power of N).

Write

Then

/ R(0)e(—no)do + / R(0)e(—n6)do
[0?1]_

n) + E(n)
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The stratagy of the proof

The total input

RO=> Y =T¥x?
YEBT X,y<X
(va):1

where § is the critical exponent of A.
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The stratagy of the proof

The total input

RO=> Y =T¥x?

YEBT X,y<X
(x,y)=1

where § is the critical exponent of A.
It is expected that the total mass is equidstributed among
admissible numbers.
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The stratagy of the proof

The total input

RO=> Y =T¥x?

YEBT X,y<X
(x,y)=1

where § is the critical exponent of A.

It is expected that the total mass is equidstributed among
admissible numbers.

Indeed, the major arc analysis shows that for each n € [N/2, N]
admissible,

T26x2 B T25*2

M(n) > W
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The stratagy of the proof

We can not show E(n) < T2=2=7 for each n € [N/2, N]
admissible, but we can show E(n) is small on average, by
establishing an /2 bound:

> E(n? = / |R(0)[2d6 < T¥=4IN.
nez [1,0]—om
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The stratagy of the proof

We can not show E(n) < T2=2=7 for each n € [N/2, N]
admissible, but we can show E(n) is small on average, by
establishing an /2 bound:

> E(n? = / |R(0)[2d6 < T¥=4IN.
nez [1,0]—om

This implies that for most n € [N/2, N] admissible,
R(n) = M(n) + E(n) > 0, with a power savings on the
exceptional set.
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Major arc analysis

To estimate [, ﬁ’(@)e(—n@)d@, we evaluate IA?(é) when q is
small. The main player is the A-sum:

A= > > elhtoy)g

X, y<X )\EBT
ged(x,y)=
r
= > D ehlong) 3
X,y<X M EN/A(Q) AEBT
ged(x,y)=1 A=Xo(mod q)
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Major arc analysis

To estimate [, ﬁ’(@)e(—n@)d@, we evaluate IA?(é) when q is
small. The main player is the A-sum:

A= > > elhtoy)g

X, y<X )\EBT
ged(x,y)=
r
= > D ehlong) 3
X,y<X M EN/A(Q) AEBT
ged(x,y)=1 A=Xo(mod q)

Effective lattice point counting (Lee-Oh, Vinogradov,
Mohammadi-Oh) —-

g‘;r 1= #A/A()T25+O(T25 ‘)

A=Xp(mod q)

It is important that there exists ¢ > 0 independent of g.
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Spectral gap property of A

Definition

Let {X;}icn be a family of k-regular, finite, connected graphs
with | X;| — oco. Let M; be the adjacency matrix of X;. It has
eigenvalues

k= )\o(M,') > )\1(/\/’,‘) > )\Q(M,') > 2> )\S(M,') > —Kk.

{Xi}icn is an expander family if 3e > 0 such that k — A\{(M;) > ¢
for all .

v
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Spectral gap property of A

Definition

Let G = (S) is a finitely generated, infinite subgroup of GL(Z),
and let A C Z*. G has spectral gap property with respect to A if
{Cay(G/G(q),S)}gea is a family of expanders.
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Spectral gap property of A

Definition

Let G = (S) is a finitely generated, infinite subgroup of GL(Z),
and let A C Z*. G has spectral gap property with respect to A if
{Cay(G/G(q),S)}gea is a family of expanders.

Examples

@ G is an arithmetic lattice, A = Z+ (Margulis,
Burger-Sarnak, Clozel, etc. )
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Spectral gap property of A

Definition

Let G = (S) is a finitely generated, infinite subgroup of GL(Z),
and let A C Z*. G has spectral gap property with respect to A if
{Cay(G/G(q),S)}gea is a family of expanders.

Examples

@ G is an arithmetic lattice, A = Z+ (Margulis,
Burger-Sarnak, Clozel, etc. )

@ Zcl(G) = SLn(Q), A= Z* (Bourgain-Varju)
Here Zcl(G) is the Zariski closure of G in GL,(Q)
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Spectral gap property of A

Definition

Let G = (S) is a finitely generated, infinite subgroup of GL(Z),
and let A C Z*. G has spectral gap property with respect to A if
{Cay(G/G(q),S)}gea is a family of expanders.

@ G is an arithmetic lattice, A = Z+ (Margulis,
Burger-Sarnak, Clozel, etc. )

@ Zcl(G) = SLn(Q), A= Z* (Bourgain-Varju)
Here Zcl(G) is the Zariski closure of G in GL,(Q)

@ The connected component of Zcl(G) is perfect,
A ={q: q square free} (Salehi Golsefidy-Varju), or
A={p™: me Z*"} (Salehi Golsefidy)
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Spectral gap property of A

Our contention is, Zcl(A) = SL(2, Q[v/—d]), and we require
A=7% .
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Spectral gap property of A

Our contention is, Zcl(A) = SL(2, Q[v/—d]), and we require
A=7% .

Theorem (Fuchs-Stange-2)
N has spectral gap property with respect to Z.".
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Spectral gap property of A

Our contention is, Zcl(A) = SL(2, Q[v/—d]), and we require
A=7% .

Theorem (Fuchs-Stange-2)

N has spectral gap property with respect to Z.".

Lemma (Varju)

Let G be a finite group with a finite symmetric generating set S.
Suppose Gy, --- , G; < G with SN G; generates Gj, and that for
each g € G, there exist g; € G; such thatg = g19>--- g;- Then

|S N Gjl ‘ IS| — M(G;, SN G))
S| o

S| = M(G,S) > min

~1<i<!
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Spectral gap property of A

Our contention is, Zcl(A) = SL(2, Q[v/—d]), and we require
A=7% .

Theorem (Fuchs-Stange-2)
N has spectral gap property with respect to Z.".

Lemma (Varju)

Let G be a finite group with a finite symmetric generating set S.
Suppose Gy, --- , G; < G with SN G; generates Gj, and that for
each g € G, there exist g; € G; such thatg = g19>--- g;- Then

|S N Gjl ‘ IS| — M(G;, SN G))
S| o

S| = M(G,S) > min

~1<i<!

In our application, G = A/A(q), G; are conjugates of I'/T(q).
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A generalization

Theorem (Salehi Golsefidy-Z)

Let Ay and N, be two finitely generated subgroups of GLn(Z).
Fori=1,2, let Zcl(\;)° be the Zariski-connected component of
the Zariski-closure of A; in GL,(Q). Suppose N\, < A and the
normal closure of Zcl(N\2)° in Zcl(A\1)° is Zcl(A1)° . Then if Ao
satisfies the spectral gap property with respect to some

A C Z*, then N\ satisfies the spectral gap property with respect
to A.
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A generalization

Theorem (Salehi Golsefidy-Z)

Let Ay and N, be two finitely generated subgroups of GL,(7Z).
Fori=1,2, let Zcl(\;)° be the Zariski-connected component of
the Zariski-closure of A; in GL,(Q). Suppose N\, < A and the
normal closure of Zcl(N\2)° in Zcl(A\1)° is Zcl(A1)° . Then if Ao
satisfies the spectral gap property with respect to some

A C Z*, then N\ satisfies the spectral gap property with respect
to A.

Corollary
Let A < GLy(Z). Assume Zcl(N)° is perfect:

[ZCI(N)°, Zel(M)°] = Zel(N)°.

Assume further that \ contains a Zariski-dense subgroup of
SL4(Z), then N satisfies the spectral gap property with respect
to Z+.
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Minor arc analysis

We evaluate IA?(C%) for g large. The x, y-sum plays the main role:

Z Z f,\X}’)

AEBT X, y<X

r
:Z > e(fA(XoJo)a) oo
AEBT X0,Y0EZ/qZ x,y<X
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Minor arc analysis

We evaluate IA?(C%) for g large. The x, y-sum plays the main role:

Z Z f,\X}’)

AEBT X, y<X

r
:Z > e(fA(XoJo)a) oo
AEBT X0,Y0EZ/qZ x,y<X

We do not get enough cancellation from the exponential sum
meyer/qZ e(f)\(x())yO)(L,)'
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Minor arc analysis

By taking norm square of IA?(é) and sum over r € Z/qQZ*, we
encounter Kloosterman-Salié type sum

ax + bx™!
Yooe( T ) x),
XEL/qL> q

where x is a character of Z/qZ*.
Kloosterman’s elementary bound gives

3 e(ax+qt»(—1> < g3/

XEZL/qZL*
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