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Integral Apollonian circle packings

Figure: Integral Apollonian circle packings
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Integral circle packings of other conformal types
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Figure: Guettler and Mallows’ Apollonian 3-circle packing and
Stange’s Q[

√
−2]-Apollonian packing
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Other integral circle packings

Figure: Kontorovich-Nakamura’s integral crystallographic packing
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A basic questions

Question
What integers arise as curvatures from an integral circle
packing?
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A brief overview of the work on Apollonian packings

Theorem (Descartes)
The curvatures κ1, κ2, κ3, κ4 from any four mutually tangent
circles in an Apollonian packing satisfy the following relation:

Q(κ1, κ2, κ3, κ4)

=2(κ2
1 + κ2

2 + κ2
3 + κ2

4)− (κ1 + κ2 + κ3 + κ4)2 = 0

Corollary

Fix κ2, κ3, κ4. The two solutions κ(1)
1 , κ

(2)
1 for κ1 in the quadratic

equation
Q(κ1, κ2, κ3, κ4) = 0

satisfies
κ

(1)
1 + κ

(2)
1 = 2(κ2 + κ3 + κ4)
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A brief overview of the work on Apollonian packings

Corollary
Fix a quadruple of curvatures of four mutually tangent circles
r = (κ1, κ2, κ3, κ4). The set of curvatures K is given by
∪k

i=1〈A · r ,ei〉, where A = 〈S1,S2,S3,S4〉 < OQ, and

S1 =


−1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1

 ,S2 =


1 0 0 0
2 −1 2 2
0 0 1 0
0 0 0 1



S3 =


1 0 0 0
0 1 0 0
2 2 −1 2
0 0 0 1

 ,S4 =


1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 −1


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To understand K , a first step is to understand K (mod q)
for each q. For this purpose, it is not very convenient to
work with A, because A does not have strong
approximation property.

Choose a spin homomorphism ρ : PSL(2,C)→ SOQ, and
work with Λ = ρ−1(A ∩ SOQ) ⊂ PSL(2,Z[i]), where

Λ =

〈
±
(

1 4i
0 1

)
,±
(
−2 i
i 0

)
,±
(

2 + 2i 4 + 3i
−i −2i

)〉
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Definition
Let P be any integral Apollonian circle packings with
gcd{curvatures} = 1. A congruence class mod 24 is admissible
if it contains at least one curvature from P.

Figure: Admissible congruence classes mod 24 are
{0,8,9,12,17,20}(mod 24)
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Theorem (Bourgain-Kontorovich)
Let P be any integral Apollonian circle packings with
gcd{curvatures} = 1. Almost every positive integer in
admissible congruence classes mod 24 is a curvature.

Why 24?
Let Λ(m) be the principle congruence subgroup of Λ of level m:{
λ ∈ Λ : λ ≡

(
1 0
0 1

)
mod m

}
, then for any q ∈ Z+,

Λ(24)(mod q) = SL(2,Z[i])(24)(mod q).

Xin Zhang, joint with Elena Fuchs and Kate Stange Local-global principles in circle packings



Theorem (Bourgain-Kontorovich)
Let P be any integral Apollonian circle packings with
gcd{curvatures} = 1. Almost every positive integer in
admissible congruence classes mod 24 is a curvature.

Why 24?
Let Λ(m) be the principle congruence subgroup of Λ of level m:{
λ ∈ Λ : λ ≡

(
1 0
0 1

)
mod m

}
, then for any q ∈ Z+,

Λ(24)(mod q) = SL(2,Z[i])(24)(mod q).

Xin Zhang, joint with Elena Fuchs and Kate Stange Local-global principles in circle packings



The Schmidt arrangement

Figure: The orbit SL(2,Z[i]) · R̂
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Consider a union of circles P from the Schmidt arrangement
maximal with respect to

P is connected.
Circles from P do not traverse.
There does not exist a triple of circles (C1,C2,C3), such
that C1 lies in C3 and C2 lies outside C3.

Then P is an Apollonian packing, and any other integral
Apollonian packing is a Möbius transform of P by a matrix
M ∈ SL(2,Z[i]).
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In general, one can replace Z[i] by any ring of integers OK of
an imaginary quadratic field K (e.g. K = Q[

√
−5], then

OK = Z[
√
−5]). Consider the maximal set P of circles from

SL(2,OK ) satisfying:
P is connected.
Circles from P do not traverse.
There does not exist a triple of circles (C1,C2,C3), such
that C1 lies in C3 and C2 lies outside C3.

Then
P is a packing of circles with integral curvatures.
The stabilizer ΛP of P is an infinite co-volume, Zariski
dense subgroup of SL(2,OK ).
ΛP contains a congruence subgroup ΓP of SL(2,Z).
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Statement of the problem

Let ∆ be the discriminant of OK . For any

g =

(
Ag Bg
Cg Dg

)
∈ PSL(2,OK ), g sends the horizontal line

R̂ +
√

∆
2 to a circle of curvature

κ

(
g

(
R̂ +

√
∆

2

))
=
√
−∆|Cg |2 + 2=(CgDg)

The Problem
Let Λ = 〈S〉 be a finitely generated subgroup of PSL(2,OK ),
and Λ contains a congruence subgroup Γ of PSL(2,Z). Let
M ∈ PSL(2,OK ). Study the set of integers

K =
κ(MΛ(R̂ +

√
∆
2 ))

√
−∆

=

{
κ(Mλ(R̂ +

√
∆
2 ))

√
−∆

: λ ∈ Λ

}
,

where ∆ is the discriminant of OK .
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The main theorem

Theorem (Fuchs-Stange-Z)

Let K(N) = K ∩ [0,N]. There exists a positive integer L, such
that

#K(N) = cN + O(N1−η)

for some η > 0, where

c =
#{admissible congruence classes mod L}

L

Corollary
Almost every primes in admissible congruence classes mod L
is a curvature.

Conjecture (Local-global conjecture)

#K(N) = cN + O(1)
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The role of the congruence subgroup

1 Λ is finitely generated =⇒ Λ is geometrically finite.
(Tameness Theorem, Agol, Calegari-Gabai)

2 The critical exponent δ(Λ) of Λ is greater than 1
(Bishop-Jones).

3 Λ enjoys a spectral gap property.
4 Curvatures can be produced by quadratic forms.

Comment: (1) and (2) allows us to use Lax-Phillips’ Theory to
count points of Λ. (3) allows us to count points of Λ and its
congruence subgroups Λ(q) with uniform control on the error
terms.
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Shifted quadratic forms

Fix λ ∈ Λ. Let
(

a b
c d

)
∈ Γ, the congruence subgroup of

SL(2,Z). A computation shows that

κ

(
Mλ

(
a b
c d

)
(R +

√
∆

2 )

)
√
−∆

= |CMλa + DMλc|2 +
2=(CMλDMλ)√

−∆

Define fλ(a, c) = |CMλa + DMλc|2 + 2=(CMλDMλ)√
−∆

. Then
fλ(a, c) ∈ K if a, c satisfies some congruence condition and
gcd(a, c) = 1.
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It is classical that

# ({fλ(a, c)|a, c ∈ Z,gcd(a, c) = 1} ∩ [0,N])�λ
N

(log N)1/2

Idea to prove the theorem: Take many such quadratic forms,
hoping to cover most of the admissible numbers from [0,N].
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Setup of the ensemble

Choose two parameters T ,X , where T = N
1

200 ,X = N
99

200 , so
that T 2X 2 = N. Let BT = {λ ∈ Λ : ‖λ‖ < T}, where∥∥∥∥(a b

c d

)∥∥∥∥ =
√

a2 + b2 + c2 + d2. Define

R(n) =
∑
λ∈BT

∑
x ,y≤X

gcd(x ,y)=1

1{fλ(a, c) = n}

R(n) > 0 for all sufficiently large admissible numbers =⇒ The
local-global conjecture.
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We have a good understanding of the sum over R(n):

R̂(0) =
∑
n∈Z

R(n) =
∑
n∈Z

∑
λ∈BT

∑
x ,y≤X

gcd(x ,y)=1

1{fλ(a, c) = n}

=
∑
λ∈BT

∑
x ,y≤X

gcd(x ,y)=1

1 ∼ #BT · cX 2

We also have good estimate for

R̂(
r
q

) =
∑
n∈Z

R(n)e
(

rn
q

)
for q small.
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The circle method

Let
R̂(θ) =

∑
n∈Z

R(n)e(nθ).

Then

R(n) =

∫ 1

0
R̂(θ)e(−nθ)dθ.

The main contribution of the above integral comes from M, the
union of small neighborhoods of r

q , with q < Q0, where Q0 is a
small power of T (recall T is a small power of N).
Write

R(n) =

∫
M

R̂(θ)e(−nθ)dθ +

∫
[0,1]−M

R̂(θ)e(−nθ)dθ

=M(n) + E(n)
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The stratagy of the proof

The total input

R̂(0) =
∑
γ∈BT

∑
x ,y≤X

(x ,y)=1

� T 2δX 2,

where δ is the critical exponent of Λ.

It is expected that the total mass is equidstributed among
admissible numbers.
Indeed, the major arc analysis shows that for each n ∈ [N/2,N]
admissible,

M(n)� T 2δX 2

T 2X 2 = T 2δ−2.
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The stratagy of the proof

We can not show E(n)� T 2δ−2−η for each n ∈ [N/2,N]
admissible, but we can show E(n) is small on average, by
establishing an l2 bound:∑

n∈Z
E(n)2 =

∫
[1,0]−M

|R̂(θ)|2dθ � T 4δ−4−ηN.

This implies that for most n ∈ [N/2,N] admissible,
R(n) = M(n) + E(n) > 0, with a power savings on the
exceptional set.
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Major arc analysis

To estimate
∫
M R̂(θ)e(−nθ)dθ, we evaluate R̂( r

q ) when q is
small. The main player is the λ-sum:

R̂(
r
q

) =
∑

x ,y≤X
gcd(x ,y)=1

∑
λ∈BT

e(fλ(x , y)
r
q

)

=
∑

x ,y≤X
gcd(x ,y)=1

∑
λ0∈Λ/Λ(q)

e(fλ0(x , y)
r
q

)
∑
λ∈BT

λ≡λ0(mod q)

1

Effective lattice point counting (Lee-Oh, Vinogradov,
Mohammadi-Oh) =⇒∑

λ∈BT
λ≡λ0(mod q)

1 =
c

#Λ/Λ(q)
T 2δ + O(T 2δ−ε)

It is important that there exists ε > 0 independent of q.
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Spectral gap property of Λ

Definition
Let {Xi}i∈N be a family of k -regular, finite, connected graphs
with |Xi | → ∞. Let Mi be the adjacency matrix of Xi . It has
eigenvalues

k = λ0(Mi) > λ1(Mi) ≥ λ2(Mi) ≥ · · · ≥ λs(Mi) ≥ −k .

{Xi}i∈N is an expander family if ∃ε > 0 such that k − λ1(Mi) ≥ ε
for all i .
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Spectral gap property of Λ

Definition
Let G = 〈S〉 is a finitely generated, infinite subgroup of GLn(Z),
and let A ⊂ Z+. G has spectral gap property with respect to A if
{Cay(G/G(q),S)}q∈A is a family of expanders.

Examples

G is an arithmetic lattice, A = Z+ (Margulis,
Burger-Sarnak, Clozel, etc. )
Zcl(G) = SLn(Q), A = Z+ (Bourgain-Varju)
Here Zcl(G) is the Zariski closure of G in GLn(Q)

The connected component of Zcl(G) is perfect,
A = {q : q square free} (Salehi Golsefidy-Varju), or
A = {pm : m ∈ Z+} (Salehi Golsefidy)
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Spectral gap property of Λ

Our contention is, Zcl(Λ) = SL(2,Q[
√
−d ]), and we require

A = Z+.

Theorem (Fuchs-Stange-Z)

Λ has spectral gap property with respect to Z+.

Lemma (Varju)
Let G be a finite group with a finite symmetric generating set S.
Suppose G1, · · · ,Gl ≤ G with S ∩Gi generates Gi , and that for
each g ∈ G, there exist gi ∈ Gi such that g = g1g2 · · · gl . Then

|S| − λ1(G,S) ≥ min
1≤i≤l

{
|S ∩Gi |
|S|

· |S| − λ1(Gi ,S ∩Gi)

2l2

}
In our application, G = Λ/Λ(q), Gi are conjugates of Γ/Γ(q).
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A generalization

Theorem (Salehi Golsefidy-Z)

Let Λ1 and Λ2 be two finitely generated subgroups of GLn(Z).
For i = 1,2, let Zcl(Λi)

◦ be the Zariski-connected component of
the Zariski-closure of Λi in GLn(Q). Suppose Λ2 ≤ Λ1 and the
normal closure of Zcl(Λ2)◦ in Zcl(Λ1)◦ is Zcl(Λ1)◦ . Then if Λ2
satisfies the spectral gap property with respect to some
A ⊂ Z+, then Λ1 satisfies the spectral gap property with respect
to A.

Corollary

Let Λ ≤ GLn(Z). Assume Zcl(Λ)◦ is perfect:

[Zcl(Λ)◦,Zcl(Λ)◦] = Zcl(Λ)◦.

Assume further that Λ contains a Zariski-dense subgroup of
SLd (Z), then Λ satisfies the spectral gap property with respect
to Z+.
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Minor arc analysis

We evaluate R̂( r
q ) for q large. The x , y -sum plays the main role:

R̂(
r
q

) =
∑
λ∈BT

∑
x ,y≤X

e(fλ(x , y)
r
q

)

=
∑
λ∈BT

∑
x0,y0∈Z/qZ

e(fλ(x0, y0)
r
q

)
∑

x ,y≤X
x≡x0,y≡y0

1

We do not get enough cancellation from the exponential sum∑
x0,y0∈Z/qZ e(fλ(x0, y0) r

q ).
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Minor arc analysis

By taking norm square of R̂( r
q ) and sum over r ∈ Z/qZ×, we

encounter Kloosterman-Salié type sum

∑
x∈Z/qZ×

e
(

ax + bx−1

q

)
χ(x),

where χ is a character of Z/qZ×.
Kloosterman’s elementary bound gives∣∣∣∣∣∣

∑
x∈Z/qZ×

e
(

ax + bx−1

q

)∣∣∣∣∣∣� q3/4
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