Local-global principles in circle packings

Xin Zhang, joint with Elena Fuchs and Kate Stange

12/15/2017

Integral Apollonian circle packings

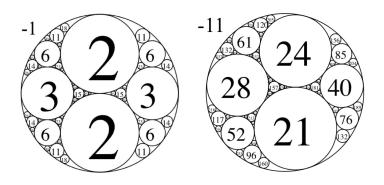


Figure: Integral Apollonian circle packings

Integral circle packings of other conformal types

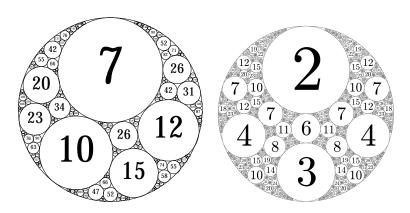


Figure: Guettler and Mallows' Apollonian 3-circle packing and Stange's $\mathbb{Q}[\sqrt{-2}]$ -Apollonian packing

Other integral circle packings

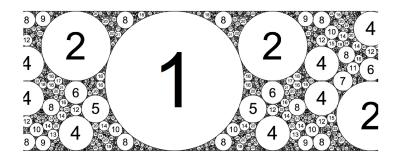


Figure: Kontorovich-Nakamura's integral crystallographic packing

A basic questions

Question

What integers arise as curvatures from an integral circle packing?

A brief overview of the work on Apollonian packings

Theorem (Descartes)

The curvatures $\kappa_1, \kappa_2, \kappa_3, \kappa_4$ from any four mutually tangent circles in an Apollonian packing satisfy the following relation:

$$Q(\kappa_1, \kappa_2, \kappa_3, \kappa_4)$$
=2(\kappa_1^2 + \kappa_2^2 + \kappa_3^2 + \kappa_4^2) - (\kappa_1 + \kappa_2 + \kappa_3 + \kappa_4)^2 = 0

A brief overview of the work on Apollonian packings

Theorem (Descartes)

The curvatures $\kappa_1, \kappa_2, \kappa_3, \kappa_4$ from any four mutually tangent circles in an Apollonian packing satisfy the following relation:

$$Q(\kappa_1, \kappa_2, \kappa_3, \kappa_4)$$
=2(\kappa_1^2 + \kappa_2^2 + \kappa_3^2 + \kappa_4^2) - (\kappa_1 + \kappa_2 + \kappa_3 + \kappa_4)^2 = 0

Corollary

Fix κ_2 , κ_3 , κ_4 . The two solutions $\kappa_1^{(1)}$, $\kappa_1^{(2)}$ for κ_1 in the quadratic equation

$$Q(\kappa_1, \kappa_2, \kappa_3, \kappa_4) = 0$$

satisfies

$$\kappa_1^{(1)} + \kappa_1^{(2)} = 2(\kappa_2 + \kappa_3 + \kappa_4)$$

A brief overview of the work on Apollonian packings

Corollary

Fix a quadruple of curvatures of four mutually tangent circles $\mathbf{r}=(\kappa_1,\kappa_2,\kappa_3,\kappa_4)$. The set of curvatures K is given by $\cup_{i=1}^k \langle \mathcal{A}\cdot\mathbf{r},e_i\rangle$, where $\mathcal{A}=\langle S_1,S_2,S_3,S_4\rangle < O_Q$, and

$$S_{1} = \begin{pmatrix} -1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, S_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 2 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & -1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}, S_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 2 & 2 & -1 \end{pmatrix}$$

To understand K, a first step is to understand K (mod q) for each q. For this purpose, it is not very convenient to work with A, because A does not have strong approximation property.

- To understand K, a first step is to understand K (mod q) for each q. For this purpose, it is not very convenient to work with A, because A does not have strong approximation property.
- Choose a spin homomorphism $\rho: PSL(2,\mathbb{C}) \to SO_Q$, and work with $\Lambda = \rho^{-1}(A \cap SO_Q) \subset PSL(2,\mathbb{Z}[i])$, where

$$\Lambda = \left\langle \pm \begin{pmatrix} 1 & 4i \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} -2 & i \\ i & 0 \end{pmatrix}, \pm \begin{pmatrix} 2+2i & 4+3i \\ -i & -2i \end{pmatrix} \right\rangle$$

Definition

Let \mathcal{P} be any integral Apollonian circle packings with $gcd\{curvatures\} = 1$. A congruence class mod 24 is admissible if it contains at least one curvature from \mathcal{P} .

Definition

Let \mathcal{P} be any integral Apollonian circle packings with $gcd\{curvatures\} = 1$. A congruence class mod 24 is admissible if it contains at least one curvature from \mathcal{P} .

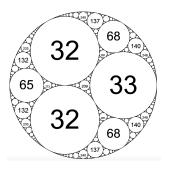


Figure: Admissible congruence classes mod 24 are {0, 8, 9, 12, 17, 20}(mod 24)

Theorem (Bourgain-Kontorovich)

Let \mathcal{P} be any integral Apollonian circle packings with $gcd\{curvatures\} = 1$. Almost every positive integer in admissible congruence classes mod 24 is a curvature.

Theorem (Bourgain-Kontorovich)

Let \mathcal{P} be any integral Apollonian circle packings with $gcd\{curvatures\} = 1$. Almost every positive integer in admissible congruence classes mod 24 is a curvature.

Why 24?

Let $\Lambda(m)$ be the principle congruence subgroup of Λ of level m:

$$\left\{\lambda\in\Lambda:\lambda\equiv\begin{pmatrix}1&0\\0&1\end{pmatrix}\mod m
ight\}, ext{ then for any }q\in\mathbb{Z}^+,$$

$$\Lambda(24) (\mathsf{mod}\ q) = \mathit{SL}(2,\mathbb{Z}[i])(24) (\mathsf{mod}\ q).$$

The Schmidt arrangement

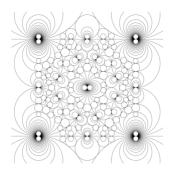


Figure: The orbit $SL(2,\mathbb{Z}[i]) \cdot \widehat{\mathbb{R}}$

Consider a union of circles \mathcal{P} from the Schmidt arrangement maximal with respect to

Consider a union of circles $\mathcal P$ from the Schmidt arrangement maximal with respect to

P is connected.

Consider a union of circles $\mathcal P$ from the Schmidt arrangement $\mathit{maximal}$ with respect to

- P is connected.
- Circles from \mathcal{P} do not traverse.

Consider a union of circles \mathcal{P} from the Schmidt arrangement maximal with respect to

- P is connected.
- Circles from \mathcal{P} do not traverse.
- There does not exist a triple of circles (C₁, C₂, C₃), such that C₁ lies in C₃ and C₂ lies outside C₃.

Consider a union of circles \mathcal{P} from the Schmidt arrangement maximal with respect to

- P is connected.
- Circles from \mathcal{P} do not traverse.
- There does not exist a triple of circles (C₁, C₂, C₃), such that C₁ lies in C₃ and C₂ lies outside C₃.

Then \mathcal{P} is an Apollonian packing, and any other integral Apollonian packing is a Möbius transform of \mathcal{P} by a matrix $M \in SL(2,\mathbb{Z}[i])$.

In general, one can replace $\mathbb{Z}[i]$ by any ring of integers \mathcal{O}_K of an imaginary quadratic field K (e.g. $K = \mathbb{Q}[\sqrt{-5}]$, then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$). Consider the maximal set \mathcal{P} of circles from $SL(2,\mathcal{O}_K)$ satisfying:

- \bullet \mathcal{P} is connected.
- ullet Circles from \mathcal{P} do not traverse.
- There does not exist a triple of circles (C₁, C₂, C₃), such that C₁ lies in C₃ and C₂ lies outside C₃.

In general, one can replace $\mathbb{Z}[i]$ by any ring of integers \mathcal{O}_K of an imaginary quadratic field K (e.g. $K = \mathbb{Q}[\sqrt{-5}]$, then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$). Consider the maximal set \mathcal{P} of circles from $SL(2,\mathcal{O}_K)$ satisfying:

- P is connected.
- ullet Circles from \mathcal{P} do not traverse.
- There does not exist a triple of circles (C₁, C₂, C₃), such that C₁ lies in C₃ and C₂ lies outside C₃.

Then

ullet ${\mathcal P}$ is a packing of circles with integral curvatures.

In general, one can replace $\mathbb{Z}[i]$ by any ring of integers \mathcal{O}_K of an imaginary quadratic field K (e.g. $K=\mathbb{Q}[\sqrt{-5}]$, then $\mathcal{O}_K=\mathbb{Z}[\sqrt{-5}]$). Consider the maximal set \mathcal{P} of circles from $SL(2,\mathcal{O}_K)$ satisfying:

- \bullet \mathcal{P} is connected.
- ullet Circles from \mathcal{P} do not traverse.
- There does not exist a triple of circles (C₁, C₂, C₃), such that C₁ lies in C₃ and C₂ lies outside C₃.

Then

- ullet \mathcal{P} is a packing of circles with integral curvatures.
- The stabilizer Λ_P of P is an infinite co-volume, Zariski dense subgroup of SL(2, O_K).

In general, one can replace $\mathbb{Z}[i]$ by any ring of integers \mathcal{O}_K of an imaginary quadratic field K (e.g. $K=\mathbb{Q}[\sqrt{-5}]$, then $\mathcal{O}_K=\mathbb{Z}[\sqrt{-5}]$). Consider the maximal set \mathcal{P} of circles from $SL(2,\mathcal{O}_K)$ satisfying:

- \bullet \mathcal{P} is connected.
- ullet Circles from $\mathcal P$ do not traverse.
- There does not exist a triple of circles (C₁, C₂, C₃), such that C₁ lies in C₃ and C₂ lies outside C₃.

Then

- ullet \mathcal{P} is a packing of circles with integral curvatures.
- The stabilizer $\Lambda_{\mathcal{P}}$ of \mathcal{P} is an infinite co-volume, Zariski dense subgroup of $SL(2, \mathcal{O}_K)$.
- $\Lambda_{\mathcal{P}}$ contains a congruence subgroup $\Gamma_{\mathcal{P}}$ of $SL(2,\mathbb{Z})$.

Statement of the problem

Let Δ be the discriminant of \mathcal{O}_K . For any

$$g = egin{pmatrix} A_g & B_g \ C_g & D_g \end{pmatrix} \in \textit{PSL}(2, \mathcal{O}_K), \, g \, ext{sends the horizontal line}$$

 $\widehat{\mathbb{R}} + \frac{\sqrt{\Delta}}{2}$ to a circle of curvature

$$\kappa\left(g\left(\widehat{\mathbb{R}}+rac{\sqrt{\Delta}}{2}
ight)
ight)=\sqrt{-\Delta}|C_g|^2+2\Im(\overline{C_g}D_g)$$

Statement of the problem

Let Δ be the discriminant of \mathcal{O}_K . For any

$$g=egin{pmatrix} A_g & B_g \ C_g & D_g \end{pmatrix} \in \mathit{PSL}(2,\mathcal{O}_K),\, g ext{ sends the horizontal line}$$

 $\widehat{\mathbb{R}} + \frac{\sqrt{\Delta}}{2}$ to a circle of curvature

$$\kappa\left(g\left(\widehat{\mathbb{R}}+\frac{\sqrt{\Delta}}{2}\right)\right)=\sqrt{-\Delta}|C_g|^2+2\Im(\overline{C_g}D_g)$$

The Problem

Let $\Lambda = \langle \mathcal{S} \rangle$ be a finitely generated subgroup of PSL $(2, \mathcal{O}_K)$, and Λ contains a congruence subgroup Γ of PSL $(2, \mathbb{Z})$. Let $M \in PSL(2, \mathcal{O}_K)$. Study the set of integers

$$\mathcal{K} = \frac{\kappa(M\Lambda(\widehat{\mathbb{R}} + \frac{\sqrt{\Delta}}{2}))}{\sqrt{-\Delta}} = \left\{\frac{\kappa(M\lambda(\widehat{\mathbb{R}} + \frac{\sqrt{\Delta}}{2}))}{\sqrt{-\Delta}} : \lambda \in \Lambda\right\},$$

where Δ is the discriminant of \mathcal{O}_{κ} .

200

The main theorem

Theorem (Fuchs-Stange-Z)

Let $K(N) = K \cap [0, N]$. There exists a positive integer L, such that

$$\#\mathcal{K}(N) = cN + O(N^{1-\eta})$$

for some $\eta > 0$, where

$$c = \frac{\#\{\textit{admissible congruence classes mod L}\}}{L}$$

The main theorem

Theorem (Fuchs-Stange-Z)

Let $K(N) = K \cap [0, N]$. There exists a positive integer L, such that

$$\#\mathcal{K}(N) = cN + O(N^{1-\eta})$$

for some $\eta > 0$, where

$$c = \frac{\#\{\textit{admissible congruence classes mod L}\}}{L}$$

Corollary

Almost every primes in admissible congruence classes mod L is a curvature.

The main theorem

Theorem (Fuchs-Stange-Z)

Let $K(N) = K \cap [0, N]$. There exists a positive integer L, such that

$$\#\mathcal{K}(N) = cN + O(N^{1-\eta})$$

for some $\eta > 0$, where

$$c = rac{\# \{ ext{admissible congruence classes mod L} \}}{L}$$

Corollary

Almost every primes in admissible congruence classes mod L is a curvature.

Conjecture (Local-global conjecture)

$$\#\mathcal{K}(N) = cN + O(1)$$

 \bullet \land is finitely generated $\Longrightarrow \land$ is geometrically finite. (Tameness Theorem, Agol, Calegari-Gabai)

- \bullet \land is finitely generated $\Longrightarrow \land$ is geometrically finite. (Tameness Theorem, Agol, Calegari-Gabai)
- ② The critical exponent $\delta(\Lambda)$ of Λ is greater than 1 (Bishop-Jones).

- \bullet \land is finitely generated $\Longrightarrow \land$ is geometrically finite. (Tameness Theorem, Agol, Calegari-Gabai)
- ② The critical exponent $\delta(\Lambda)$ of Λ is greater than 1 (Bishop-Jones).
- A enjoys a spectral gap property.

- \bullet \land is finitely generated $\Longrightarrow \land$ is geometrically finite. (Tameness Theorem, Agol, Calegari-Gabai)
- ② The critical exponent $\delta(\Lambda)$ of Λ is greater than 1 (Bishop-Jones).
- A enjoys a spectral gap property.
- Curvatures can be produced by quadratic forms.

- \bullet \land is finitely generated $\Longrightarrow \land$ is geometrically finite. (Tameness Theorem, Agol, Calegari-Gabai)
- ② The critical exponent $\delta(\Lambda)$ of Λ is greater than 1 (Bishop-Jones).
- A enjoys a spectral gap property.
- Curvatures can be produced by quadratic forms.

Comment: (1) and (2) allows us to use Lax-Phillips' Theory to count points of Λ . (3) allows us to count points of Λ and its congruence subgroups $\Lambda(q)$ with uniform control on the error terms.

Shifted quadratic forms

Fix $\lambda \in \Lambda$. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, the congruence subgroup of $SL(2,\mathbb{Z})$. A computation shows that

$$\frac{\kappa \left(M\lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix} (\mathbb{R} + \frac{\sqrt{\Delta}}{2})\right)}{\sqrt{-\Delta}} = |C_{M\lambda}a + D_{M\lambda}c|^2 + \frac{2\Im(\overline{C_{M\lambda}}D_{M\lambda})}{\sqrt{-\Delta}}$$

Shifted quadratic forms

Fix $\lambda \in \Lambda$. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, the congruence subgroup of $SL(2,\mathbb{Z})$. A computation shows that

$$\frac{\kappa \left(M\lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix} (\mathbb{R} + \frac{\sqrt{\Delta}}{2})\right)}{\sqrt{-\Delta}} = |C_{M\lambda}a + D_{M\lambda}c|^2 + \frac{2\Im(\overline{C_{M\lambda}}D_{M\lambda})}{\sqrt{-\Delta}}$$

Define $f_{\lambda}(a,c) = |C_{M\lambda}a + D_{M\lambda}c|^2 + \frac{2\Im(\overline{C_{M\lambda}D_{M\lambda}})}{\sqrt{-\Delta}}$. Then $f_{\lambda}(a,c) \in \mathcal{K}$ if a,c satisfies some congruence condition and $\gcd(a,c)=1$.

It is classical that

$$\#\left(\left\{f_{\lambda}(a,c)|a,c\in\mathbb{Z},\gcd(a,c)=1\right\}\cap[0,N]\right)\gg_{\lambda}\frac{N}{(\log N)^{1/2}}$$

It is classical that

$$\#\left(\left\{f_{\lambda}(a,c)|a,c\in\mathbb{Z},\gcd(a,c)=1\right\}\cap[0,N]\right)\gg_{\lambda}\frac{N}{(\log N)^{1/2}}$$

Idea to prove the theorem: Take many such quadratic forms, hoping to cover most of the admissible numbers from [0, N].

Setup of the ensemble

Choose two parameters T, X, where $T = N^{\frac{1}{200}}, X = N^{\frac{99}{200}}$, so that $T^2X^2 = N$. Let $\mathcal{B}_T = \{\lambda \in \Lambda: \|\lambda\| < T\}$, where $\left\| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\| = \sqrt{a^2 + b^2 + c^2 + d^2}$. Define

$$R(n) = \sum_{\lambda \in \mathcal{B}_{\mathcal{T}}} \sum_{\substack{x,y \leq X \\ \gcd(x,y)=1}} \mathbf{1} \{ f_{\lambda}(a,c) = n \}$$

Setup of the ensemble

Choose two parameters T, X, where $T = N^{\frac{1}{200}}, X = N^{\frac{99}{200}}$, so that $T^2X^2 = N$. Let $\mathcal{B}_T = \{\lambda \in \Lambda : \|\lambda\| < T\}$, where $\left\| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\| = \sqrt{a^2 + b^2 + c^2 + d^2}$. Define

$$R(n) = \sum_{\lambda \in \mathcal{B}_T} \sum_{\substack{x,y \leq X \\ \gcd(x,y)=1}} \mathbf{1} \{ f_{\lambda}(a,c) = n \}$$

R(n) > 0 for all sufficiently large admissible numbers \Longrightarrow The local-global conjecture.

We have a good understanding of the sum over R(n):

$$\widehat{R}(0) = \sum_{n \in \mathbb{Z}} R(n) = \sum_{n \in \mathbb{Z}} \sum_{\substack{\lambda \in \mathcal{B}_T \\ \gcd(x,y) = 1}} \mathbf{1} \{ f_{\lambda}(a,c) = n \}$$

$$= \sum_{\substack{\lambda \in \mathcal{B}_T \\ \gcd(x,y) = 1}} \sum_{\substack{x,y \le X \\ \gcd(x,y) = 1}} \mathbf{1} \sim \#\mathcal{B}_T \cdot cX^2$$

We have a good understanding of the sum over R(n):

$$\begin{split} \widehat{R}(0) &= \sum_{n \in \mathbb{Z}} R(n) = \sum_{n \in \mathbb{Z}} \sum_{\lambda \in \mathcal{B}_{T}} \sum_{\substack{x,y \leq X \\ \gcd(x,y) = 1}} \mathbf{1} \{ f_{\lambda}(a,c) = n \} \\ &= \sum_{\lambda \in \mathcal{B}_{T}} \sum_{\substack{x,y \leq X \\ \gcd(x,y) = 1}} \mathbf{1} \sim \# \mathcal{B}_{T} \cdot cX^{2} \end{split}$$

We also have good estimate for

$$\widehat{R}(\frac{r}{q}) = \sum_{n \in \mathbb{Z}} R(n)e\left(\frac{rn}{q}\right)$$

for q small.

The circle method

Let

$$\widehat{R}(\theta) = \sum_{n \in \mathbb{Z}} R(n)e(n\theta).$$

The circle method

Let

$$\widehat{R}(\theta) = \sum_{n \in \mathbb{Z}} R(n)e(n\theta).$$

Then

$$R(n) = \int_0^1 \widehat{R}(\theta) e(-n\theta) d\theta.$$

The circle method

Let

$$\widehat{R}(\theta) = \sum_{n \in \mathbb{Z}} R(n)e(n\theta).$$

Then

$$R(n) = \int_0^1 \widehat{R}(\theta) e(-n\theta) d\theta.$$

The main contribution of the above integral comes from \mathfrak{M} , the union of small neighborhoods of $\frac{r}{q}$, with $q < Q_0$, where Q_0 is a small power of T (recall T is a small power of N). Write

$$R(n) = \int_{\mathfrak{M}} \widehat{R}(\theta) e(-n\theta) d\theta + \int_{[0,1]-\mathfrak{M}} \widehat{R}(\theta) e(-n\theta) d\theta$$
$$= M(n) + E(n)$$

The total input

$$\widehat{R}(0) = \sum_{\gamma \in \mathcal{B}_T} \sum_{\substack{x,y \leq X \\ (x,y)=1}} \asymp T^{2\delta} X^2,$$

where δ is the critical exponent of Λ .

The total input

$$\widehat{R}(0) = \sum_{\gamma \in \mathcal{B}_T} \sum_{\substack{x,y \leq X \\ (x,y)=1}} \asymp T^{2\delta} X^2,$$

where δ is the critical exponent of Λ . It is expected that the total mass is equidstributed among admissible numbers.

The total input

$$\widehat{R}(0) = \sum_{\gamma \in \mathcal{B}_T} \sum_{\substack{x,y \leq X \\ (x,y) = 1}} \asymp T^{2\delta} X^2,$$

where δ is the critical exponent of Λ .

It is expected that the total mass is equidstributed among admissible numbers.

Indeed, the major arc analysis shows that for each $n \in [N/2, N]$ admissible,

$$M(n) \gg \frac{T^{2\delta}X^2}{T^2X^2} = T^{2\delta-2}.$$

We can not show $E(n) \ll T^{2\delta-2-\eta}$ for each $n \in [N/2, N]$ admissible, but we can show E(n) is small on average, by establishing an l^2 bound:

$$\sum_{n\in\mathbb{Z}} E(n)^2 = \int_{[1,0]-\mathfrak{M}} |\widehat{R}(\theta)|^2 d\theta \ll T^{4\delta-4-\eta} N.$$

We can not show $E(n) \ll T^{2\delta-2-\eta}$ for each $n \in [N/2, N]$ admissible, but we can show E(n) is small on average, by establishing an l^2 bound:

$$\sum_{n\in\mathbb{Z}} E(n)^2 = \int_{[1,0]-\mathfrak{M}} |\widehat{R}(\theta)|^2 d\theta \ll T^{4\delta-4-\eta} N.$$

This implies that for most $n \in [N/2, N]$ admissible, R(n) = M(n) + E(n) > 0, with a power savings on the exceptional set.

Major arc analysis

To estimate $\int_{\mathfrak{M}} \widehat{R}(\theta) e(-n\theta) d\theta$, we evaluate $\widehat{R}(\frac{r}{q})$ when q is small. The main player is the λ -sum:

$$\begin{split} \widehat{R}(\frac{r}{q}) &= \sum_{\substack{x,y \leq X \\ \gcd(x,y)=1}} \sum_{\lambda \in \mathcal{B}_T} e(f_{\lambda}(x,y)\frac{r}{q}) \\ &= \sum_{\substack{x,y \leq X \\ \gcd(x,y)=1}} \sum_{\lambda_0 \in \Lambda/\Lambda(q)} e(f_{\lambda_0}(x,y)\frac{r}{q}) \sum_{\substack{\lambda \in \mathcal{B}_T \\ \lambda \equiv \lambda_0 (\text{mod } q)}} 1 \end{split}$$

Major arc analysis

To estimate $\int_{\mathfrak{M}} \widehat{R}(\theta) e(-n\theta) d\theta$, we evaluate $\widehat{R}(\frac{r}{q})$ when q is small. The main player is the λ -sum:

$$\begin{split} \widehat{R}(\frac{r}{q}) &= \sum_{\substack{x,y \leq X \\ \gcd(x,y) = 1}} \sum_{\lambda \in \mathcal{B}_T} e(f_\lambda(x,y) \frac{r}{q}) \\ &= \sum_{\substack{x,y \leq X \\ \gcd(x,y) = 1}} \sum_{\lambda_0 \in \Lambda/\Lambda(q)} e(f_{\lambda_0}(x,y) \frac{r}{q}) \sum_{\substack{\lambda \in \mathcal{B}_T \\ \lambda \equiv \lambda_0 (\text{mod } q)}} 1 \end{split}$$

Effective lattice point counting (Lee-Oh, Vinogradov, Mohammadi-Oh) \Longrightarrow

$$\sum_{\substack{\lambda \in \mathcal{B}_{\mathcal{T}} \ \lambda \equiv \lambda_0 (\mathsf{mod} \; q)}} 1 = rac{c}{\# \Lambda / \Lambda(q)} \mathit{T}^{2\delta} + \mathit{O}(\mathit{T}^{2\delta - \epsilon})$$

It is important that there exists $\epsilon > 0$ independent of q.

Definition

Let $\{X_i\}_{i\in\mathbb{N}}$ be a family of k-regular, finite, connected graphs with $|X_i|\to\infty$. Let M_i be the adjacency matrix of X_i . It has eigenvalues

$$k = \lambda_0(\textit{M}_i) > \lambda_1(\textit{M}_i) \geq \lambda_2(\textit{M}_i) \geq \cdots \geq \lambda_s(\textit{M}_i) \geq -k.$$

 $\{X_i\}_{i\in\mathbb{N}}$ is an *expander family* if $\exists \epsilon > 0$ such that $k - \lambda_1(M_i) \geq \epsilon$ for all i.

Definition

Let $G = \langle \mathcal{S} \rangle$ is a finitely generated, infinite subgroup of $GL_n(\mathbb{Z})$, and let $A \subset \mathbb{Z}^+$. G has spectral gap property with respect to A if $\{Cay(G/G(q),\mathcal{S})\}_{q\in A}$ is a family of expanders.

Definition

Let $G = \langle \mathcal{S} \rangle$ is a finitely generated, infinite subgroup of $GL_n(\mathbb{Z})$, and let $A \subset \mathbb{Z}^+$. G has spectral gap property with respect to A if $\{Cay(G/G(q),\mathcal{S})\}_{q \in A}$ is a family of expanders.

Examples

• G is an arithmetic lattice, $A = \mathbb{Z}^+$ (Margulis, Burger-Sarnak, Clozel, etc.)

Definition

Let $G = \langle \mathcal{S} \rangle$ is a finitely generated, infinite subgroup of $GL_n(\mathbb{Z})$, and let $A \subset \mathbb{Z}^+$. G has spectral gap property with respect to A if $\{Cay(G/G(q),\mathcal{S})\}_{q\in A}$ is a family of expanders.

Examples

- G is an arithmetic lattice, $A = \mathbb{Z}^+$ (Margulis, Burger-Sarnak, Clozel, etc.)
- $Zcl(G) = SL_n(\mathbb{Q})$, $A = \mathbb{Z}^+$ (Bourgain-Varju) Here Zcl(G) is the Zariski closure of G in $GL_n(\mathbb{Q})$

Definition

Let $G = \langle \mathcal{S} \rangle$ is a finitely generated, infinite subgroup of $GL_n(\mathbb{Z})$, and let $A \subset \mathbb{Z}^+$. G has spectral gap property with respect to A if $\{Cay(G/G(q),\mathcal{S})\}_{q\in A}$ is a family of expanders.

Examples

- G is an arithmetic lattice, $A = \mathbb{Z}^+$ (Margulis, Burger-Sarnak, Clozel, etc.)
- $Zcl(G) = SL_n(\mathbb{Q})$, $A = \mathbb{Z}^+$ (Bourgain-Varju) Here Zcl(G) is the Zariski closure of G in $GL_n(\mathbb{Q})$
- The connected component of Zcl(G) is perfect,
 A = {q : q square free} (Salehi Golsefidy-Varju), or
 A = {p^m : m ∈ Z⁺} (Salehi Golsefidy)

Our contention is, $Zcl(\Lambda) = SL(2, \mathbb{Q}[\sqrt{-d}])$, and we require $A = \mathbb{Z}^+$.

Our contention is, $Zcl(\Lambda) = SL(2, \mathbb{Q}[\sqrt{-d}])$, and we require $A = \mathbb{Z}^+$.

Theorem (Fuchs-Stange-Z)

 Λ has spectral gap property with respect to \mathbb{Z}^+ .

Our contention is, $Zcl(\Lambda) = SL(2, \mathbb{Q}[\sqrt{-d}])$, and we require $A = \mathbb{Z}^+$.

Theorem (Fuchs-Stange-Z)

 Λ has spectral gap property with respect to \mathbb{Z}^+ .

Lemma (Varju)

Let G be a finite group with a finite symmetric generating set S. Suppose $G_1, \dots, G_l \leq G$ with $S \cap G_i$ generates G_i , and that for each $g \in G$, there exist $g_i \in G_i$ such that $g = g_1 g_2 \cdots g_l$. Then

$$|\mathcal{S}| - \lambda_1(G, \mathcal{S}) \geq \min_{1 \leq i \leq l} \left\{ \frac{|\mathcal{S} \cap G_i|}{|\mathcal{S}|} \cdot \frac{|\mathcal{S}| - \lambda_1(G_i, \mathcal{S} \cap G_i)}{2l^2} \right\}$$

Our contention is, $Zcl(\Lambda) = SL(2, \mathbb{Q}[\sqrt{-d}])$, and we require $A = \mathbb{Z}^+$.

Theorem (Fuchs-Stange-Z)

 Λ has spectral gap property with respect to \mathbb{Z}^+ .

Lemma (Varju)

Let G be a finite group with a finite symmetric generating set S. Suppose $G_1, \dots, G_l \leq G$ with $S \cap G_i$ generates G_i , and that for each $g \in G$, there exist $g_i \in G_i$ such that $g = g_1 g_2 \cdots g_l$. Then

$$|\mathcal{S}| - \lambda_1(G, \mathcal{S}) \ge \min_{1 \le i \le l} \left\{ \frac{|\mathcal{S} \cap G_i|}{|\mathcal{S}|} \cdot \frac{|\mathcal{S}| - \lambda_1(G_i, \mathcal{S} \cap G_i)}{2l^2} \right\}$$

In our application, $G = \Lambda/\Lambda(q)$, G_i are conjugates of $\Gamma/\Gamma(q)$.

A generalization

Theorem (Salehi Golsefidy-Z)

Let Λ_1 and Λ_2 be two finitely generated subgroups of $GL_n(\mathbb{Z})$. For i=1,2, let $Zcl(\Lambda_i)^\circ$ be the Zariski-connected component of the Zariski-closure of Λ_i in $GL_n(Q)$. Suppose $\Lambda_2 \leq \Lambda_1$ and the normal closure of $Zcl(\Lambda_2)^\circ$ in $Zcl(\Lambda_1)^\circ$ is $Zcl(\Lambda_1)^\circ$. Then if Λ_2 satisfies the spectral gap property with respect to some $A \subset \mathbb{Z}^+$, then Λ_1 satisfies the spectral gap property with respect to A.

A generalization

Theorem (Salehi Golsefidy-Z)

Let Λ_1 and Λ_2 be two finitely generated subgroups of $GL_n(\mathbb{Z})$. For i=1,2, let $Zcl(\Lambda_i)^\circ$ be the Zariski-connected component of the Zariski-closure of Λ_i in $GL_n(Q)$. Suppose $\Lambda_2 \leq \Lambda_1$ and the normal closure of $Zcl(\Lambda_2)^\circ$ in $Zcl(\Lambda_1)^\circ$ is $Zcl(\Lambda_1)^\circ$. Then if Λ_2 satisfies the spectral gap property with respect to some $A \subset \mathbb{Z}^+$, then Λ_1 satisfies the spectral gap property with respect to A.

Corollary

Let $\Lambda \leq GL_n(\mathbb{Z})$. Assume $Zcl(\Lambda)^{\circ}$ is perfect:

$$[\textit{Zcl}(\Lambda)^{\circ}, \textit{Zcl}(\Lambda)^{\circ}] = \textit{Zcl}(\Lambda)^{\circ}.$$

Assume further that Λ contains a Zariski-dense subgroup of $SL_d(\mathbb{Z})$, then Λ satisfies the spectral gap property with respect to \mathbb{Z}^+ .

Minor arc analysis

We evaluate $\widehat{R}(\frac{r}{q})$ for q large. The x, y-sum plays the main role:

$$\begin{split} \widehat{R}(\frac{r}{q}) &= \sum_{\lambda \in \mathcal{B}_{\mathcal{T}}} \sum_{x,y \leq X} e(f_{\lambda}(x,y) \frac{r}{q}) \\ &= \sum_{\lambda \in \mathcal{B}_{\mathcal{T}}} \sum_{x_0,y_0 \in \mathbb{Z}/q\mathbb{Z}} e(f_{\lambda}(x_0,y_0) \frac{r}{q}) \sum_{\substack{x,y \leq X \\ x \equiv x_0, y \equiv y_0}} 1 \end{split}$$

Minor arc analysis

We evaluate $\widehat{R}(\frac{r}{a})$ for q large. The x, y-sum plays the main role:

$$\begin{split} \widehat{R}(\frac{r}{q}) &= \sum_{\lambda \in \mathcal{B}_{\mathcal{T}}} \sum_{x,y \leq X} e(f_{\lambda}(x,y) \frac{r}{q}) \\ &= \sum_{\lambda \in \mathcal{B}_{\mathcal{T}}} \sum_{x_0,y_0 \in \mathbb{Z}/q\mathbb{Z}} e(f_{\lambda}(x_0,y_0) \frac{r}{q}) \sum_{\substack{x,y \leq X \\ x \equiv x_0, y \equiv y_0}} 1 \end{split}$$

We do not get enough cancellation from the exponential sum $\sum_{x_0,y_0\in\mathbb{Z}/q\mathbb{Z}}e(f_\lambda(x_0,y_0)\frac{r}{q}).$

Minor arc analysis

By taking norm square of $\widehat{R}(\frac{r}{q})$ and sum over $r \in \mathbb{Z}/q\mathbb{Z}^{\times}$, we encounter Kloosterman-Salié type sum

$$\sum_{x \in \mathbb{Z}/q\mathbb{Z}^{\times}} e\left(\frac{ax + bx^{-1}}{q}\right) \chi(x),$$

where χ is a character of $\mathbb{Z}/q\mathbb{Z}^{\times}$. Kloosterman's elementary bound gives

$$\left| \sum_{x \in \mathbb{Z}/q\mathbb{Z}^{\times}} e\left(\frac{ax + bx^{-1}}{q}\right) \right| \ll q^{3/4}$$