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Our setting

Given a configuration of finitely many circles, we can generate a
circle packing by circle inversions.
Examples:

Figure : An Apollonian
Configuration

Figure : An Apollonian Circle
Packing



Figure : An Apollonian 3-Circle
Configuration

Figure : An Apollonian 3-Circle
Packing



Figure : An Apollonian 9-Circle
Configuration

Figure : An Apollonian 9-Circle
Packing



Figure : Dual Circles
Figure : Circle
Inversion



We fix a circle packing P, pick a circle C0 from P, and let P0 be
the circles tangent to C0. We want to study how the tangencies on
P0 are distributed.

Figure : P0: the bounding circle
C0: the blue circles



Specifically, we want to ask

I Are they uniformly distributed on C0?

I If so, beyond uniform distribution, can we study some finer
scale statistics? (For example, how about the gap
distribution?)

Let I be an arc on C0, and l(I) be the standard arclength
measure. Let AT ,I be the collection of tangencies on I, whose
corresponding tangent circles have curvatures ≤ T .

Fact
There is a positive constant cP,C0 , independent of I, such that, as
T goes to infinity,

#AT ,I ∼ l(I)cP,C0T
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Gap Distribution

Let {x i
T ,I} be the sequence of tangencies in AT ,I ordered by

counterclockwise direction. The nearest neighbor gaps, or spacings
between the tangencies are the arclength distance between x i

T ,I
and x i+1

T ,I , denoted by

d(x i
T ,I , x

i+1
T ,I)

and the mean spacing is

〈dT ,I〉 =
l(I)

#AT ,I

We define the gap distribution function to be

FT ,I(s) =
1

#AT ,I
·#

{
x i
T :

d(x i
T , x

i+1
T )

〈dT ,I〉
≤ s

}



If AT ,I were distributed like a lattice, then

lim
T→∞

FT ,I(s) =

{
0 if s < 1
1 if s ≥ 1

If AT ,I were distributed like a random sequence, then

lim
T→∞

FT ,I(s) =

∫ s

0
e−tdt = 1− e−s



We will show that the AT ,I are distributed differently from the
above two scenarios. More precisely,

Theorem (Rudnick-Z, Main Theorem)

There exists a continuous piecewise smooth function F , which is
independent of I such that

lim
T→∞

FT ,I(s) = F (s).

F is also conformal invariant: let
M ∈ SL(2,C), P̃ = M(P), C̃0 = M(C0) and F̃ be the gap
distribution function of C̃0 from P̃, then F̃ = F .
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Figure : The density F
′
(s) of the

gap distribution for classical
Apollonian packings, which is
the same as that discovered by
Hall (1970) for Farey sequences.

Figure : An Apollonian Circle
Packing
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Figure : The density F
′
(s) of the

gap distribution for Apollonian
3-circle packings.

Figure : An Apollonian 3-Circle
Packing
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Figure : The density F
′
(s) of the

gap distribution for Apollonian
9-circle packings.

Figure : An Apollonian 9-Circle
Packing
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Classic Apollonian

Apollonian 3

Apollonian 9

Figure : The density F
′
(s) of the gap distributions for classical

Apollonian, Apollonian 3-circle, and Apollonian 9-circle packings.



Ingredients of the Proof

I Reduction to a hyperbolic lattice point counting problem in
PSL(2,R). A typical such problem is to count lattice points
asymptotically in an expanding subset of PSL(2,R)

I Tools from spectral theory of automorphic forms (Good’s
Theorem).
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Anton Good’s Theorem in Iwasawa Decomposition
Recall the Iwasawa Decomposition: PSL(2,R) = G = NAK
(Iwasawa Decomposition), where

N =

{(
1 n
0 1

)
| n ∈ R

}

A =

{(
a−

1
2 0

0 a
1
2

)
| a ∈ R+

}

K = PSO(2) =

{(
cos θ − sin θ
sin θ cos θ

)
| θ ∈ [0, π]

}
For each γ ∈ PSL(2,R), there exist unique
n(γ) ∈ R,a(γ)∈ R+,θ(γ) ∈ [0, π) such that

γ =

(
1 n(γ)
0 1

)
·

(
a(γ)−

1
2 0

0 a(γ)
1
2

)
·
(

cos θ(γ) − sin θ(γ)
sin θ(γ) cos θ(γ)

)
the Haar measure dµ of G can be written as dµ = dndadθ.



Theorem (Good)

Assume Γ is a lattice in PSL(2,R) and has a cusp at ∞. Let I be
a bounded interval in R, and J be an interval in [0, π), then as
T →∞,

#{γ ∈ Γ | a(γ)≤T ,n(γ)∈I,θ(γ)∈J} ∼ l(I)l(J )

πV (Γ)
T .

Corollary

Suppose ∞ is a cusp for Γ. For any compact subset Ω in the right
half plane {(c , d) | c ≥ 0}with piecewise smooth boundary,

#
{
γ =

(
aγ bγ
cγ dγ

)
∈ Γ : n(γ) ∈ I , (cγ , dγ) ∈

√
T Ω
}

∼ 2l(I)m(Ω)

πV (Γ)
T

as T →∞, where m is the standard Lebesgue measure in R2.
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Figure : The region Ω for Apollonian 3-Circle Packings


