Gap Distribution on Circle Packings

Xin Zhang (Joint with Zeev Rudnick)

May 31, 2015

Our setting

Given a configuration of finitely many circles, we can generate a circle packing by circle inversions. *Examples:*

Figure : An Apollonian Configuration

Figure : An Apollonian Circle Packing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Figure : An Apollonian 3-Circle Configuration

Figure : An Apollonian 3-Circle Packing

・ロト ・聞ト ・ヨト ・ヨト

э

Figure : An Apollonian 9-Circle Configuration

Figure : An Apollonian 9-Circle Packing

◆□> <圖> <필> <필> < => < =</p>

(ロ)、

Figure : Circle Inversion

We fix a circle packing \mathcal{P} , pick a circle C_0 from \mathcal{P} , and let \mathcal{P}_0 be the circles tangent to C_0 . We want to study how the tangencies on \mathcal{P}_0 are distributed.

Figure : P_0 : the bounding circle C_0 : the blue circles $\langle \Box \rangle \langle \Box \rangle$ Specifically, we want to ask

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Specifically, we want to ask

- ► Are they uniformly distributed on *C*₀?
- If so, beyond uniform distribution, can we study some finer scale statistics? (For example, how about the gap distribution?)

Specifically, we want to ask

- ► Are they uniformly distributed on *C*₀?
- If so, beyond uniform distribution, can we study some finer scale statistics? (For example, how about the gap distribution?)

Let \mathcal{I} be an arc on C_0 , and $I(\mathcal{I})$ be the standard arclength measure. Let $\mathcal{A}_{\mathcal{T},\mathcal{I}}$ be the collection of tangencies on \mathcal{I} , whose corresponding tangent circles have curvatures $\leq \mathcal{T}$.

Fact

There is a positive constant $c_{\mathcal{P},C_0}$, independent of \mathcal{I} , such that, as T goes to infinity,

 $\#\mathcal{A}_{\mathcal{T},\mathcal{I}} \sim \textit{I}(\mathcal{I}) \textit{c}_{\mathcal{P},\textit{C}_0} \textit{T}$

Gap Distribution

Let $\{x_{\mathcal{T},\mathcal{I}}^i\}$ be the sequence of tangencies in $\mathcal{A}_{\mathcal{T},\mathcal{I}}$ ordered by counterclockwise direction. The nearest neighbor gaps, or spacings between the tangencies are the arclength distance between $x_{\mathcal{T},\mathcal{I}}^i$ and $x_{\mathcal{T},\mathcal{I}}^{i+1}$, denoted by

$$d(x_{T,\mathcal{I}}^{i}, x_{T,\mathcal{I}}^{i+1})$$

and the mean spacing is

$$\langle d_{\mathcal{T},\mathcal{I}}
angle = rac{l(\mathcal{I})}{\# \mathcal{A}_{\mathcal{T},\mathcal{I}}}$$

We define the gap distribution function to be

$$F_{\mathcal{T},\mathcal{I}}(s) = \frac{1}{\#\mathcal{A}_{\mathcal{T},\mathcal{I}}} \cdot \#\left\{x_{\mathcal{T}}^{i}: \frac{d(x_{\mathcal{T}}^{i}, x_{\mathcal{T}}^{i+1})}{\langle d_{\mathcal{T},\mathcal{I}}\rangle} \leq s\right\}$$

If $\mathcal{A}_{\mathcal{T},\mathcal{I}}$ were distributed like a lattice, then

$$\lim_{\mathcal{T} o \infty} \mathcal{F}_{\mathcal{T},\mathcal{I}}(s) = \left\{egin{array}{cc} 0 & ext{if } s < 1 \ 1 & ext{if } s \geq 1 \end{array}
ight.$$

If $\mathcal{A}_{\mathcal{T},\mathcal{I}}$ were distributed like a random sequence, then

$$\lim_{T\to\infty}F_{T,\mathcal{I}}(s)=\int_0^s e^{-t}dt=1-e^{-s}$$

We will show that the $\mathcal{A}_{\mathcal{T},\mathcal{I}}$ are distributed differently from the above two scenarios. More precisely,

Theorem (Rudnick-Z, Main Theorem)

There exists a continuous piecewise smooth function F, which is independent of ${\cal I}$ such that

$$\lim_{T\to\infty}F_{T,\mathcal{I}}(s)=F(s).$$

F is also conformal invariant: let $M \in SL(2, \mathbb{C}), \tilde{\mathcal{P}} = M(\mathcal{P}), \tilde{C}_0 = M(C_0)$ and \tilde{F} be the gap distribution function of \tilde{C}_0 from $\tilde{\mathcal{P}}$, then $\tilde{F} = F$.

Figure : The density F'(s) of the gap distribution for classical Apollonian packings, which is the same as that discovered by Hall (1970) for Farey sequences.

Figure : An Apollonian Circle Packing

・ロト ・聞ト ・ヨト ・ヨト

ъ

Figure : The density F'(s) of the gap distribution for Apollonian 3-circle packings.

Figure : An Apollonian 3-Circle Packing

ъ

Figure : The density F'(s) of the gap distribution for Apollonian 9-circle packings.

Figure : An Apollonian 9-Circle Packing

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 釣A@

・ロト ・ 理 ・ ・ ヨ ・ ・

-

Figure : The density F'(s) of the gap distributions for classical Apollonian, Apollonian 3-circle, and Apollonian 9-circle packings.

Ingredients of the Proof

▶ Reduction to a hyperbolic lattice point counting problem in PSL(2, ℝ). A typical such problem is to count lattice points asymptotically in an expanding subset of PSL(2, ℝ)

Ingredients of the Proof

- ▶ Reduction to a hyperbolic lattice point counting problem in PSL(2, ℝ). A typical such problem is to count lattice points asymptotically in an expanding subset of PSL(2, ℝ)
- Tools from spectral theory of automorphic forms (Good's Theorem).

Anton Good's Theorem in Iwasawa Decomposition

Recall the Iwasawa Decomposition: $PSL(2, \mathbb{R}) = G = NAK$ (Iwasawa Decomposition), where

$$N = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{R} \right\}$$
$$A = \left\{ \begin{pmatrix} a^{-\frac{1}{2}} & 0 \\ 0 & a^{\frac{1}{2}} \end{pmatrix} \mid a \in \mathbb{R}^+ \right\}$$
$$K = PSO(2) = \left\{ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \mid \theta \in [0, \pi] \right\}$$

For each $\gamma \in PSL(2, \mathbb{R})$, there exist unique $n(\gamma) \in \mathbb{R}, a(\gamma) \in \mathbb{R}^+, \theta(\gamma) \in [0, \pi)$ such that

$$\gamma = \begin{pmatrix} 1 & n(\gamma) \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a(\gamma)^{-\frac{1}{2}} & 0 \\ 0 & a(\gamma)^{\frac{1}{2}} \end{pmatrix} \cdot \begin{pmatrix} \cos \theta(\gamma) & -\sin \theta(\gamma) \\ \sin \theta(\gamma) & \cos \theta(\gamma) \end{pmatrix}$$

the Haar measure $d\mu$ of G can be written as $d\mu = dn da d\theta$.

Theorem (Good)

Assume Γ is a lattice in $PSL(2, \mathbb{R})$ and has a cusp at ∞ . Let \mathcal{I} be a bounded interval in \mathbb{R} , and \mathcal{J} be an interval in $[0, \pi)$, then as $T \to \infty$,

$$\#\{\gamma \in \Gamma \mid a(\gamma) \leq T, n(\gamma) \in \mathcal{I}, \theta(\gamma) \in \mathcal{J}\} \sim \frac{I(\mathcal{I})I(\mathcal{J})}{\pi V(\Gamma)} T.$$

Corollary

Suppose ∞ is a cusp for Γ . For any compact subset Ω in the right half plane $\{(c, d) \mid c \ge 0\}$ with piecewise smooth boundary,

$$\# \Big\{ \gamma = \begin{pmatrix} a_{\gamma} & b_{\gamma} \\ c_{\gamma} & d_{\gamma} \end{pmatrix} \in \Gamma : n(\gamma) \in \mathcal{I} , \ (c_{\gamma}, d_{\gamma}) \in \sqrt{T}\Omega \Big\}$$
$$\sim \frac{2l(\mathcal{I})m(\Omega)}{\pi V(\Gamma)} T$$

as $T \to \infty$, where m is the standard Lebesgue measure in \mathbb{R}^2 .

Figure : The region Ω for Apollonian 3-Circle Packings