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Abstract. We obtain an almost all result on the size of the symmetric
mth power L-functions (m = 1, 2, 3, 4) for the normalized Hecke eigen-
cuspforms at s = 1, which extends results of Elliott and Montgomery &
Vaughan on Dirichlet L-functions to higher degree L-functions.

§ 1. Introduction

The study on the extreme values of Dirichlet L-functions at the point 1

has a long and rich history. The research in this topic was originated with

a paper of Littlewood [15] in 1928 and was pursued by many authors (cf.

[1], [2], [6], [7], [8], [23], [17] and [9]). A very good historical account can

be found in [9], where Granville & Soundararajan made a very important

new progress on the distribution of the extreme values of L(1, χd) for a real

primitive character χd of modulus |d|.
Among the family of L-functions attached to the automorphic cuspidal

representations for GLn(Q) where n ≥ 1, the Dirichlet L-functions consti-

tute only a small part corresponding to n = 1. The GL2 class consists of

those L-functions associated to holomorphic cusp forms or Maass forms.

The symmetric mth power of a GL2 L-function yields, under Langlands

functoriality conjecture if m ≥ 5, an automorphic GLm+1 L-function which

is defined as a Euler product of degree m + 1 (and thus called a L-function

of degree m + 1). The properties of these L-functions are of great current

interests and their values at 1 are recently delved. Luo [16] investigated

the case of symmetric square L-functions for Maass forms with large eigen-

value. Royer [18, 19], Habsieger & Royer [10], Royer & Wu [20] considered

the first two symmetric power L-functions attached to holomorphic cusp

forms with large squarefree level † while Cogdell & Michel [3] and Royer &

Wu [21] considered all the symmetric power L-functions. Besides Lau & Wu

[14] studied similar problems in the weight aspect. In this paper we shall

further study the extreme values of symmetric power L-functions at 1.

Let us introduce our notation. For a positive even integer k, we denote

by H∗
k(1) the set of all normalized Hecke primitive eigencuspforms of weight
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k for the modular group Γ(1) = SL2(Z). It is a finite set with cardinality

(1.1) |H∗
k(1)| = k

12
+ O(1).

Here the normalization is taken in the way that the Fourier series expansion

at the cusp ∞,

(1.2) f(z) =
∞∑

n=1

λf (n)n(k−1)/2e2πinz (=mz > 0),

has its first coefficient equal to one (i.e. λf (1) = 1). Inherited from the

Hecke operators, the Fourier coefficient λf (n) satisfies the following relation

(1.3) λf (m)λf (n) =
∑

d|(m,n)

λf

(
mn

d2

)
for all integers m ≥ 1 and n ≥ 1. According to Deligne [4], for any prime

number p there is a (complex) number αf (p) such that

(1.4) |αf (p)| = 1

and

(1.5) λf (p
ν) = αf (p)ν + αf (p)ν−2 + · · ·+ αf (p)−ν

for all integers ν ≥ 1. Hence λf (n) is a real multiplicative function of n.

Associated to each f ∈ H∗
k(1), the symmetric mth power L-function (m ∈

N) is defined as

(1.6) L(s, symmf) :=
∏

p

∏
0≤j≤m

(
1− αf (p)m−2jp−s

)−1

for σ > 1, where and in the sequel σ and τ mean tacitly the real and

imaginary part of s, i.e. s = σ + iτ . Multiplying out the Euler product, we

see that it admits a Dirichlet series representation:

(1.7) L(s, symmf) =
∞∑

n=1

λsymmf (n)n−s

for σ > 1, where λsymmf (n) is a multiplicative function. By (1.4) and (1.6),

we have for n ≥ 1,

(1.8) |λsymmf (n)| ≤ τm+1(n).

As customary τm+1(n) denotes the number of solutions in positive integers

n1, . . . , nm+1 of the equation n = n1 · · ·nm+1. The case m = 1 in (1.8) is

commonly known as Deligne’s inequality. For m = 1, 2, 3, 4, the symmetric

power function L(s, symmf) can be analytically prolonged to C and satisfies

the functional equation

L∞(s, symmf)L(s, symmf) = ε(symmf)L∞(1− s, symmf)L(1− s, symmf),

where ε(symmf) = ±1 and L∞(s, symmf) is the corresponding gamma fac-

tor (cf. [3, Section 1.1]).
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In [14], Lau & Wu proved the following results on the extreme values of

L(1, symmf) in the weight aspect. Let m = 1, 2, 3, 4 and 2 | k. For any

f ∈ H∗
k(1), under GRH for L(s, symmf), we have

(1.9)

{1 + o(1)}(2B−
m log2 k)−A−

m ≤ L(1, symmf) ≤ {1 + o(1)}(2B+
m log2 k)A+

m

as k → ∞. In the opposite direction, it was shown unconditionally that

there are f±m ∈ H∗
k(1) such that for k →∞,

L(1, symmf+
m) ≥ {1 + o(1)}(B+

m log2 k)A+
m ,(1.10)

L(1, symmf−m) ≤ {1 + o(1)}(B−
m log2 k)−A−

m .(1.11)

Here (and in the sequel) logj denotes the j-fold iterated logarithm. The

constants A±
m and B±

m are explicitly evaluated,

(1.12)


A+

m = m + 1, B+
m = eγ (m = 1, 2, 3, 4),

A−
m = m + 1, B−

m = eγζ(2)−1 (m = 1, 3),

A−
2 = 1, B−

2 = eγζ(2)−2,

A−
4 = 5

4
, B−

4 = eγB′−
4 ,

where ζ(s) is the Riemann zeta-function, γ denotes the Euler constant and

B′−
4 is a positive constant given by a rather complicated Euler product (cf.

[14], (1.16)).

The results in (1.9), (1.10) and (1.11) determine completely, at least under

GRH, the order of magnitude of L(1, symmf). Then it is interesting and

natural to try removing the assumption of GRH and closing up the gap

coming from the factor 2. We shall prove an almost all result towards this

delicate problem, which can be regarded as analogues, in the higher degree

L-function case, of results of Elliott ([6], [7]) and Montgomery & Vaughan

[17] on Dirichlet L-functions. It leads to a consequence that the forms f

satisfying (1.10) or (1.11) are rather rare in the sense of being density zero.

In what follows we shall assume k to be any sufficiently large even integer

(but the parity will be repeatedly emphasized).

Theorem 1.1. Let m ∈ {1, 2, 3, 4}, θ1 > 0 and θ2 > 0 such that 1 −
2θ1 − θ2 > 0 and θ3 ∈ (0, min{1/2θ1 − 1, 1}] be fixed. Then for 2 | k and

z ≥ (log2 k)1/θ1, we have

L(1, symmf) =

{
1 + O

(
1

zθ2
+

1

(log k)θ3

)} ∏
p≤z

∏
0≤j≤m

(
1− αf (p)m−2j

p

)−1

for all but O
(
ke−z

θ1
0

)
forms f ∈ H∗

k(1), where z0 := min
{
z, (log k)2

}
and

the implied constants depend on θ1, θ2 and θ3 only.
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Corollary 1.2. Let ε > 0 be an arbitrarily small positive number, m ∈
{1, 2, 3, 4} and 2 | k. Then there is a subset E∗

k of H∗
k(1) such that

|E∗
k| � ke−(log k)1/2−ε

and for each f ∈ H∗
k(1)rE∗

k, we have{
1 + O

(
(log k)−ε

)}
(B−

m log2 k)−A−
m ≤ L(1, symmf)

≤
{
1 + O

(
(log k)−ε

)}
(B+

m log2 k)A+
m .

The implied constants depend on ε only.

Remarks. (i) These results can be generalized (with a little extra effort)

to H∗
k(N), where N is squarefree and H∗

k(N) denotes the set of all normalized

Hecke primitive eigencuspforms of weight k for the congruence subgroup

Γ0(N). Our method can also be applied to establish similar results in the

level aspect for N squarefree and free of small prime factors.

(ii) We consider the case 1 ≤ m ≤ 4 because the required properties of

the high symmetric power L-functions are only known in these cases. Other

higher degree case will follow along the same line of argument when the

(expected) corresponding properties are established.

Our results above are analogues of Theorem 1 of [17] (see also [7]), where

the case L(1, χd) was investigated. However their methods seem not to be

directly generalized to the symmetric power L-functions. Following their

approaches, one can see that correspondingly the key point of proof is to

study the large sieve type inequality

(1.15)
∑

f∈H∗
k(1)

∣∣∣∣ ∑
P<p≤2P

λsymmf (p)

p

∣∣∣∣2j

.

But then two difficulties come up. First, λsymmf (n) is not completely mul-

tiplicative and second, the instantaneously available (almost) orthogonality

property following from the large sieve result (developed in [5] for the level

case and in [14] for the weight) is not adequate. As was indicated by Cogdell

& Michel in [3, Section 1.3], the second difficulty seemed a bit problematic.

In order to get around this difficulty, we shall appeal to Petersson’s trace

formula with the observation λsymmf (n) = λf (n
m) for squarefree n. But

then the harmonic weight (in the trace formula) needs further treatment as

its trivial bound is not admissible for our purpose. To this end, we make

use of (see (2.6) below)

1 =
k − 1

12
ωf

∑
n≤k7/2

λf (n
2)

n
+ Oε

(
k−1+ε

)
,

where ωf is the harmonic weight (see (2.5) below). However, only a short

initial section of the newly introduced sum is manageable by the Petersson
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trace formula. The remaining part will be handled with the idea in ([13],

Lemma 6) by virtue of the large sieve result in [14]. Clearly our result for

(1.15) (see the proposition below) is of independent interest and has other

applications which will be presented elsewhere.

§ 2. A large sieve type inequality

This section is devoted to establish a large sieve type inequality, which

will be our key tool for the proof of Theorem 1.1. For 2 | k, f ∈ H∗
k(1),

m ∈ N and 1 ≤ P < Q ≤ 2P , we consider the sum

Tsymmf (P, Q) :=
∑

P<p≤Q

λsymmf (p)

p
.

Our aim is to prove the following result, which reveals a good control over

the tail part of the Dirichlet series representation of log L(1, symmf) for

most forms f .

Proposition 2.1. Let m ∈ N be fixed. Then, we have

(2.1)
∑

f∈H∗
k(1)

|Tsymmf (P, Q)|2j �m k(log k)θ(m)e2j log jP−j + (j!)2k20/21

uniformly for

(2.2) 2 | k, j ∈ N, 1 ≤ P j ≤ k7/(6m+24) and P < Q ≤ 2P,

where θ(m) := (m + 1)4 + m + 7 and the implied constant depends on m

only.

To prove it, we need a couple of preliminary lemmas.

Although the function λsymmf (n) is not completely multiplicative on N,

its restriction on the subset of squarefree integers recaptures this property

and furthermore

(2.3) λsymmf (n) =
∏
p|n

∑
0≤j≤m

αf (p)m−2j = λf (n
m)

for n squarefree, which follows immediately from (1.5), (1.6) and (1.7).

Thus we give an upper estimate to |Tsymmf (P, Q)|2j in terms of sums over

squarefree integers.

Lemma 2.2. Let j ∈ N, 2 | k, m ∈ N and 1 ≤ P < Q ≤ 2P . For any

f ∈ H∗
k(1), we have∣∣Tsymmf (P, Q)

∣∣2j

�m (j log Q)(m+1)4
∑\

n2≤Qj

1

n
3/2
2

∣∣∣∣ ∑[

P j/n2<n1≤Qj/n2

(n1,n2)=1

λf (n
m
1 )

aj(n1n2)

n1

∣∣∣∣2,
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where

(2.4) aj(n) = aj(n; P, Q) := |{(p1, . . . , pj) : p1 · · · pj = n, P < pi ≤ Q}|.

The summations
∑\ and

∑[ indicate run over squarefull ‡ and squarefree

integers, respectively. The implied constant depends on m only.

Proof. Multiplying out the product Tsymmf (P, Q)j, we obtain a summation

over integers in (P j, Qj]. As every integer n decomposes uniquely into a

product of coprime integers n = n1n2 with n1 squarefree and n2 squarefull,

it then follows that

Tsymmf (P, Q)j =
∑\

n2≤Qj

1

n2

∏
pν‖n2

λsymmf (p)ν
∑[

P j/n2<n1≤Qj/n2

(n1,n2)=1

λsymmf (n1)
aj(n1n2)

n1

.

Next we remove the products of λsymmf (p) over squarefull integers by the

Cauchy-Schwarz inequality and (1.8):

|Tsymmf (P, Q)|2j

≤
∑\

n≤Qj

(m + 1)2Ω(n)

n1/2

∑\

n2≤Qj

1

n
3/2
2

∣∣∣∣ ∑[

P j/n2<n1≤Qj/n2

(n1,n2)=1

λsymmf (n1)
aj(n1n2)

n1

∣∣∣∣2.
Here Ω(n) denotes the number of prime factors of n counted with multi-

plicity. Consequently, we get our result with (2.3) and the estimate below

obtained by Rankin’s trick∑\

n≤x

(m + 1)2Ω(n)

n1/2
≤

∏
p≤x

(
1 +

(m + 1)4

p
+ Om

(
1

p3/2

))
�m (log x)(m+1)4

(see the proofs of Theorems II.1.2 & II.1.13 in [22] for paradigms). �

In view of Lemma 2.2, we invoke naturally the Petersson trace formula

to prove our proposition. However the summation on the left-side of (2.1)

runs over f ∈ H∗
k(1) without the harmonic weight

(2.5) ωf :=
Γ(k − 1)

(4π)k−1‖f‖
=

12ζ(2)

(k − 1)L(1, sym2f)
.

(See [11, §2] for the last equality.) We borrow the technique in [13]. The

underlying principle is built on approximating the factor L(1, sym2f) with

a finite Dirichlet series.

Lemma 2.3. Let 2 | k, f ∈ H∗
k(1) and y ≥ 1. For any fixed ε > 0, we have

L(1, sym2f) = ζ(2)
∑
n≤y

λf (n
2)n−1 + Oε

(
kε(k3/4y−1/2 + k−1)

)
.

The implied constant depends on ε only.

‡An integer n is called squarefull if p | n ⇒ p2 | n.
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Proof. For σ > 1, we have

L(s, sym2f) = ζ(2s)
∑
n≥1

λf (n
2)n−s.

Applying the Perron formula ([22], Corollary II.2.1 with B(x) = xε and

α = 3), we deduce that∑
n≤y

λf (n
2)

n
=

1

2πi

∫ 1/ log y+ik

1/ log y−ik

L(1 + s, sym2f)

ζ(2 + 2s)

ys

s
ds+Oε

(
(ky)ε(k−1 + y−1)

)
.

By moving the segment of integration to σ = −1
2
+ε and using the convexity

bound for L(s, sym2f) (see [14], Proposition 3.1):

L(s, sym2f) �ε (k + |τ |)
3
2

max{0,1−σ}+ε,

it follows that∑
n≤y

λf (n
2)

n
=

L(1, sym2f)

ζ(2)
+ Oε

(
(ky)ε(k−1 + k3/4y−1/2)

)
,

which is equivalent to the required result. �

Taking y = k7/2 and using the bound ωf � (log k)/k (cf. [11]), Lemma 2.3

with (2.5) gives

(2.6) 1 =
k − 1

12
ωf

∑
n≤y

λf (n
2)

n
+ Oε

(
k−1+ε

)
.

As mentioned in the introduction, the (short enough) initial section of the

sum in (2.6) is under control of the Petersson trace formula. For the re-

maining part, we proceed with the idea in [13] to deduce that this part is

small on average in virtue of the large sieve result developed in [14]. Define

ω∗
f (x, y) :=

∑
x<n≤y

λf (n
2)n−1.

Then we give below the analogues of Lemmas 4 and 3 in [13], where the

sum ∑
λsym2f (n)n−1

is used instead but it seems that our choice will lead to simpler manipula-

tions.

Lemma 2.4. Let i ≥ 1, 2 | k and f ∈ H∗
k(1). Then we have

(2.7) ω∗
f (x, y)i =

∑
xi<d`≤yi

λf (`
2)

ci(d, `)

d`
,

where ci(d, `) = 0 unless d = d[d∗ with d[ squarefree and d∗ squarefull such

that d[ | ` and (d[, d∗) = 1. Furthermore, we have

(2.8) |ci(d, `)| ≤ τi(d`)τi−1(d)

where τi(·) is the divisor function defined as in (1.8).
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Proof. We proceed by induction on i. The case of i = 1 is trivial since we

have c1(1, `) = 1 and c1(d, `) = 0 for d ≥ 2. Assume that (2.7) holds for i

as claimed. Thus by (1.3) we have

ω∗
f (x, y)i+1 =

∑
x<ni+1≤y

1

ni+1

∑
xi<d`≤yi

ci(d, `)

d`

∑
di|(`,ni+1)2

λf

((
`ni+1

di

)2)

=
∑

xi+1<d0`0≤yi+1

λf (`
2
0)

d0`0

ci+1(d0, `0)

with

ci+1(d0, `0) =
∑

x<ni+1≤y

∑
xi<d`≤yi

∑
di|(`,ni+1)2

`ni+1=di`0, d0=ddi

ci(d, `).

We write uniquely d0 = d[
0d

∗
0 into a product of coprime integers with d[

0

squarefree and d∗0 squarefull. We claim that

ci+1(d0, `0) 6= 0 ⇒ d[
0 | `0.

Let d[
0 = d′d′i with d′ ‖ d and d′i ‖ di.

§ Then, (d′, di) = (d′i, d) = 1 as d[
0 ‖ ddi

and d[
0 is squarefree. Since di | (`, ni+1)

2 and `ni+1 = di`0, we have d′i | `0

(by noting d′i ‖ di). On the other hand, by the induction hypothesis we see

that ci(d, `) 6= 0 implies d′ | `, thus d′ | `0 for (d′, di) = 1. This follows

d[
0 | `0 as d[

0 = d′d′i is squarefree.

It remains to verify (2.8), which is an immediate consequence of the

formula:

ci(d, `) :=
∑

x<n1,...,ni≤y
d`=n1···ni

∑
d1|(n1,n2)2

∑
d2|(n1n2/d1,n3)2

· · ·
∑

di−1|(n1···ni−1/d1···di−2,ni)2

d=d1···di−1

1.

This completes the proof of Lemma 2.4. �

Lemma 2.5. For any A > 0, ε > 0 and integer i ≥ 1, we have

(2.9)
∑

f∈H∗
k(1)

ω∗
f (x, y)2i �A,ε,i kε

uniformly for 2 | k and k5 ≤ xi < yi ≤ kA.

Proof. The main ingredients of proof are Lemma 2.4 and the following large

sieve type inequality: Suppose a(n) �ε n−1+ε for any ε > 0. Then

(2.10)
∑

f∈H∗
k(1)

∣∣∣ ∑
L<`≤2L

a(`)λf (`
2)

∣∣∣2 �ε (kL)ε
(
1 + k5/2L−1/2

)
holds uniformly for 2 | k and L ≥ 1.

§The notation d ‖n means that vp(d) = vp(n) for all p | d, where vp(n) is the exponent
of p in the canonical factorization of n.
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The inequality (2.10) is a consequence of the relation

(2.11) λf (`
2) =

∑
dn2=`

λsym2f (d)µ(n)

where µ(n) is the Möbius function, and the large sieve inequality in ([14],

Proposition 4.1 with m = 2): For any ε > 0 we have∑
f∈H∗

k(1)

∣∣∣ ∑
`≤L

b`λsym2f (`)
∣∣∣2 �ε kε

(
L + k5/2L1/2+ε

) ∑
`≤L

|b`|2

uniformly for 2 | k, L ≥ 1 and {b`}1≤`≤L ⊂ C.

From (2.11), we write the inner sum in (2.10) into∑
L<`≤2L

a(`)λf (`
2) =

∑
d≤2L

λsym2f (d)
∑

√
L/d<n≤

√
2L/d

µ(n)a(dn2)

and apply the large sieve inequality to the right-side. Then (2.10) follows

because the condition a(n) � n−1+ε yields∑
d≤2L

∣∣∣ ∑
√

L/d<n≤
√

2L/d

∣∣a(dn2)
∣∣∣∣∣2 � L−1+ε.

Now we prove (2.9). Firstly, we divide the sum in (2.7) dyadically

ω∗
f (x, y)i =

∑
j≤(log yi)/ log 2

∑
xi/2j+1<`≤yi/2j

λf (`
2)

cj(`)

`
,

where

cj(`) :=
∑

2j<d≤2j+1

xi/`<d≤yi/`

ci(d, `)

d
.

Then, by the Cauchy-Schwarz inequality, we obtain∑
f∈H∗

k(1)

ω∗
f (x, y)2i(2.12)

�A (log k)
∑

j≤(log yi)/ log 2

∑
f∈H∗

k(1)

∣∣∣∣ ∑
xi/2j+1<`≤yi/2j

λf (`
2)

cj(`)

`

∣∣∣∣2.
From (2.8) and τi(d`) ≤ τi(d)τi(`), we have

cj(`) ≤ τi(`)
3
∑
d|`

1

d

∑\

2j/d<d∗≤2j+1/d

τi(d
∗)2

d∗
.

By the Rankin trick again, it is easy to see that∑\

d≤t

τi(d)2

√
d

� (log t)θ0(i)

with θ0(i) := ((i + 1)i/2)2, and hence

cj(`) � τi(`)
3τ(`)2−j/2(log 2j)θ0(i).
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From (2.12) and (2.10) with a(`) = 2j/2(log 2j)−θ0(i)cj(`)/`, we infer that∑
f∈H∗

k(1)

ω∗
f (x, y)2i

�A,ε,i kε
∑

j�log k

1

2j

∑
f∈H∗

k(1)

∣∣∣∣ ∑
xi/2j+1<`≤yi/2j

2j/2(log 2j)−θ0(i)cj(`)

`
λf (`

2)

∣∣∣∣2
�A,ε,i kε

∑
j�log k

2−j
{
1 + k5/2(xi2−j−1)−1/2

}
�A,ε,i kε

for k5 ≤ xi ≤ yi ≤ kA. �

Now we are ready to prove Proposition 2.1.

Proof of Proposition 2.1. By Lemma 2.2 and (2.6), we deduce that∑
f∈H∗

k(1)

|Tsymmf (P, Q)|2j(2.13)

�m (log k)(m+1)4
(

k
∑\

n2≤Qj

|M(n2)|
n

3/2
2

+ O(R)

)
,

where

M(n2) :=
∑

f∈H∗
k(1)

ωf

∑
n≤y

λf (n
2)

n

∣∣∣∣ ∑[

P j/n2<n1≤Qj/n2

(n1,n2)=1

λf (n
m
1 )

aj(n1n2)

n1

∣∣∣∣2

with y = k7/2, and

R := k−1+ε
∑\

n2≤Qj

1

n
3/2
2

∑
f∈H∗

k(1)

∣∣∣∣ ∑[

P j/n2<n1≤Qj/n2

(n1,n2)=1

λf (n
m
1 )

aj(n1n2)

n1

∣∣∣∣2(2.14)

� j!2kε
∑\

n2≤Qj

1

n
3/2
2

( ∑
P j/n2<n≤Qj/n2

τ(nm)

n

)2

� j!2kε

by the Deligne inequality, (1.1) and the trivial estimate for (2.4)

(2.15) aj(n) ≤ j!.

The remaining task is to estimate M(n2). We square out the innermost

sum in M(n2) and explore the cancellation through the Petersson trace

formula. But this approach is only effective for small n, hence we split

M(n2) into two parts

(2.16) M(n2) = Sx + Sx,y

according to n ≤ x and x < n ≤ y respectively where x = k1/2. The second

term Sx,y is handled by Lemma 2.5, as follows.
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From the estimate ωf � (log k)/k, the Deligne inequality and (2.15), we

have

Sx,y � k−1(log k)
∑

f∈H∗
k(1)

|ω∗
f (x, y)|

(
j!

∑
n≤Qj

τ(nm)n−1
)2

� (j!)2k−1(log k)2m+3
∑

f∈H∗
k(1)

|ω∗
f (x, y)|.

Applying Hölder’s inequality and Lemma 2.5 with i = 10, we deduce that

Sx,y � (j!)2k−1+ε
( ∑

f∈H∗
k(1)

1
)19/20( ∑

f∈H∗
k(1)

ω∗
f (x, y)20

)1/20

� (j!)2k−1/20+ε.

Now we treat Sx by the Petersson trace formula (see [12], Corollary 2.10)∑
f∈H∗

k(1)

ωfλf (a)λf (b) = δ(a, b) + O
(
k−5/6(ab)1/4τ3((a, b)) log(2ab)

)
where δ(a, b) is the Kronecker delta and the implied constant is absolute.

Squaring out and using (1.3) and (2.15), we obtain

Sx ≤ (j!)2
∑
n≤x

1

n

∑[ ∑[

P j/n2<n1,n′1≤Qj/n2

1

n1n′1

×
∑

d|(n1,n′1)m

∣∣∣∣ ∑
f∈H∗

k(1)

ωfλf (n
2)λf

(
(n1n

′
1)

m

d2

)∣∣∣∣.
Let us write n1 = d` and n′1 = d`′ where d = (n1, n

′
1). Then d, ` and `′ are

squarefree and pairwisely coprime for squarefree n1 and n′1. Therefore,

Sx ≤ (j!)2
∑[ ∑[ ∑[

P j/n2<d`,d`′≤Qj/n2

(`,`′)=1

1

d2``′
×(2.17)

×
∑
d1|dm

∑
n≤x

1

n

∣∣∣∣ ∑
f∈H∗

k(1)

ωfλf (n
2)λf

(
(d2``′)m

d2
1

)∣∣∣∣.
The Petersson trace formula yields that the sum over f ∈ H∗

k(1) equals

δ
(
n2, (``′)m(dm/d1)

2
)

+ O

(
(d2``′)m/4n1/2

d
1/2
1 k5/6

τ3(n
2) log k

)
.

Clearly for d1 | dm and squarefree integers ` and `′ with (`, `′) = 1, we have

n2 = (``′)m(dm/d1)
2 ⇒ ``′(dm/d1) | n.

Thus after summing over n, the δ-symbol contributes∑
n≤x

1

n
δ
(
n2, (``′)m(dm/d1)

2
)
� 1

``′
d1

dm

∑
n≤x/``′(dm/d1)

1

n

� log k

``′
,
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while the O-term produces a term trivially bounded by

log k

``′
Qj(m/2+2)

k5/6

∑
n≤x

τ3(n
2)√

n
� (log k)6``′

in view of our choices of x, j and Q.

Inserting these estimates into (2.17), it follows that

Sx � (j!)2(log k)6
∑[ ∑[ ∑[

P j/n2<d`,d`′≤Qj/n2

τ(dm)

(d``′)2

� (j!)2(log k)6
∑[

d≤Qj/n2

τ(dm)

d2

( ∑[

P j/dn2<`≤Qj/dn2

1

`2

)2

� (j!)2(log k)6 n2
2

P 2j

∑[

d≤Qj/n2

τ(dm).

Together with the estimates of Sx,y and (2.17), we get an upper bound for

M(n2):

M(n2) � (j!)2(log k)6 n2
2

P 2j

∑[

d≤Qj/n2

τ(dm) + (j!)2k−1/20+ε.

In view of (2.13), we need to evaluate the following sum over squarefull

integers. ∑\

n≤Qj

n1/2
∑[

d≤Qj/n

τ(dm) � Qj(log k)m
∑\

n≤Qj

n−1/2

� Qj(log k)m+1

as there are O(
√

t) squarefull integers less than t and∑
d≤t

τ(dm) � t(log t)m.

Together with (2.13) and (2.14), we conclude that∑
f∈H∗

k(1)

|Tsymmf (P, Q)|2j � k(log k)(m+1)4+m+7(j!)2QjP−2j + (j!)2k19/20+ε

which gives our desired result, by Stirling’s formula and Q ≤ 2P . �

§ 3. Proof of Theorem 1.1

Let m ∈ N, 2 | k and f ∈ H∗
k(1). We have

(3.1) log L(s, symmf) =
∞∑

n=1

Λsymmf (n)

ns log n
(σ > 1),
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where

Λsymmf (n)(3.2)

=

{[
αf (p)mν + αf (p)(m−2)ν + · · ·+ αf (p)−mν

]
log p if n = pν ,

0 otherwise.

Apparently |Λsymmf (n)| ≤ (m + 1) log n for n ≥ 1. To prove our theorem,

we shall show that for almost all f , log L(1, symmf) is well approximated

by a short partial sum over primes. Actually, log L(1, symmf) has a good

approximation by a partial sum of moderate length when L(s, symmf) has

a bigger zero-free region, which is available for most f ∈ H∗
k(1).

As in [14], for each η ∈ (0, 1
100

], we define

(3.3) H+
k,symm(1; η) :=

{
f ∈ H∗

k(1) : L(s, symmf) 6= 0 for s ∈ S
}
,

where S := {s : σ ≥ 1− η, |τ | ≤ 100kη} ∪ {s : σ ≥ 1}, and

(3.4) H−
k,symm(1; η) := H∗

k(1)rH+
k,symm(1; η).

According to (1.11) of [14], we have

(3.5) |H−
k,symm(1; η)| �η k31η.

For f ∈ H+
k,symm(1; η), we have the following result.

Lemma 3.1. Let η ∈ (0, 1
100

] and δ0 ∈ (0, 1] be fixed and m ∈ {1, 2, 3, 4}.
Let 2 | k and x = exp

{
[(log k)/7(m+4)]δ0

}
. Then for any f ∈ H+

k,symm(1; η),

we have

log L(1, symmf) =
∑
p≤x

∑
0≤j≤m

log

(
1− αf (p)m−2j

p

)−1

+ O

(
1

(log k)δ0

)
.

The implied constant depends on δ, η and m only.

Proof. Let f ∈ H∗
k(1), T ≥ 1 and x ≥ 1. By the Perron formula ([22],

Corollary II.2.1 with B(x) = 1 and α = 1), we have∑
2≤n≤x

Λsymmf (n)

n log n
=

1

2πi

∫ 1/ log x−iT

1/ log x−iT

log L(s + 1, symmf)
xs

s
ds

+ O

(
log(Tx)

T
+

1

x

)
.

Once f ∈ H+
k,symm(1; η), we have the upper estimate

(3.6) log L(s, symmf) �η log k

uniformly for σ ≥ 1 − 1
4
η and |τ | ≤ (log k)4/η. This is a particular case of

Proposition 3.5 of [14] (with α = 1
4
η).
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Now for f ∈ H+
k,symm(1; η), we move the line of integration to σ = −1

4
η

and estimate log L(s + 1, symmf) by (3.6) over the contour. We see that

∑
2≤n≤x

Λsymmf (n)

n log n
= log L(1, symmf) + O

(
log(kTx)

T
+

(log k)(log T )

xη/4

)(3.7)

= log L(1, symmf) + O

(
1

(log k)4/η−1

)
by taking the parameters T = (log k)4/η and x = exp

{
[(log k)/7(m+4)]δ0

}
.

On the other hand, we have∑
2≤n≤x

Λsymmf (n)

n log n
=

∑
p≤x

∑
ν≤(log x)/ log p

Λsymmf (p
ν)

pν log pν
(3.8)

=
∑
p≤x

∑
0≤j≤m

∑
ν≤(log x)/ log p

αf (p)(m−2j)ν

νpν

=
∑
p≤x

∑
0≤j≤m

{
log

(
1− αf (p)m−2j

p

)−1

+ O

(
1

x

)}
.

Combining (3.7) and (3.8), we get the required result. �

The size of x given in Lemma 3.1, even though being quite small, is still

insufficient for our purpose. Making use of the proposition to remove the

“exceptional forms”, we are able to further reduce its size in the next two

lemmas.

Lemma 3.2. Let m ∈ N, δ1 > 0 and δ2 > 0 such that δ1 − δ2 − 2 > 0 be

fixed. Suppose that

(3.9) 2 | k and (log k)δ1 ≤ P ≤ Q ≤ 2P ≤ k14/15(m+4).

Then we have

(3.10)
∣∣Tsymmf (P, Q)

∣∣ ≤ 1

(log k)δ2

for all but Oδ1,δ2,m

(
k1−θ0

)
forms f ∈ H∗

k(1), where

θ0 := (δ1 − δ2 − 2)/10(m + 4)δ1 > 0.

Proof. Define

(3.11) E1
m(P, Q) := {f ∈ H∗

k(1) : (3.10) fails}.

We shall use the proposition in Section 2 with the choices

j =

[
c′

log k

log P

]
+ 1, c′ :=

1

5(m + 4)

to count |E1
m(P, Q)|. Plainly we have

k1/(3m+12) ≤ P j < (2P )j ≤ k7/(6m+24)
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by (3.9), whence the proposition is applicable. It follows that

(3.12) |E1
m(P, Q)| � k

(
(log k)θ(m)e2j log jP−j + e2j log jk−1/21

)
(log k)2δ2j.

On the other hand, the lower bound for P in (3.9) yields that

−j log P + j(2 log j + δ2 log2 k) + θ(m) log2 k

≤ −c′ log k +
(
c′(log k)/ log P + 1

)
(2 + δ2) log2 k + θ(m) log2 k

≤ −c′{(δ1 − δ2 − 2)/δ1} log k + (θ(m) + 2 + δ2) log2 k

≤ −1
2
c′{(δ1 − δ2 − 2)/δ1} log k

and
− 1

21
log k + j(2 log j + δ2 log2 k)

≤ − 1
21

log k +
(
c′(log k)/ log P + 1

)
(2 + δ2) log2 k

≤ −
(

1
21
− c′(2 + δ2)/δ1

)
log k + (2 + δ2) log2 k

≤ −1
2

(
1
21
− c′(2 + δ2)/δ1

)
log k.

Inserting these two estimates into (3.12) and noticing 1
21
− c′(2 + δ2)/δ1 ≥

c′(δ1 − δ2 − 2)/δ1, we get the desired result. This completes the proof. �

Lemma 3.3. Let m ∈ N, δ3 > 0 and δ4 > 0 such that 1 − 2δ3 − δ4 > 0 be

fixed. Suppose that

(3.13) 2 | k and (log2 k)1/δ3 ≤ P ≤ Q ≤ 2P ≤ (c log k)1/δ3 ,

where c = (1− 2δ3 − δ4)/24(m + 4)(θ(m) + 2) > 0. Then we have

(3.14)
∣∣Tsymmf (P, Q)

∣∣ ≤ P−δ4

for all but Oδ3,δ4,m

(
ke−(θ(m)+2)P δ3

)
forms f ∈ H∗

k(1).

Proof. The argument is similar to Lemma 3.2. Define

(3.15) E2
m(P, Q) := {f ∈ H∗

k(1) : (3.14) fails}.

But this time we apply the proposition with another choice of parameters

j =

[
c′

P δ3

log P

]
+ 1, c′ :=

2θ(m) + 4

1− 2δ3 − δ4

.

By (3.13), it is easy to verify that ec′P δ3 ≤ P j ≤ k2cc′ = k1/6(m+4) <

k7/(6m+24). Thus we deduce by the proposition that

(3.16) |E2
m(P, Q)| � k

(
(log k)θ(m)e2j log jP−j + e2j log jk−1/21

)
P 2δ4j.

Now, in view of our choices of c′ and c, we have

−(1− δ4)j log P + 2j log j + θ(m) log2 k

≤ −(1− δ4)c
′P δ3 + 2

(
c′P δ3/ log P + 1

)
δ3 log P + θ(m) log2 k

≤ −c′(1− 2δ3 − δ4)P
δ3 + (θ(m) + 2) log2 k

≤ −1
2
c′(1− 2δ3 − δ4)P

δ3
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by the lower bound for P in (3.13), and

− 1
21

log k + j(2 log j + δ4 log P )

≤ − 1
21

log k +
(
c′P δ3/ log P + 1

)
(2δ3 + δ4) log P

≤ − 1
21

log k + 2c′(2δ3 + δ4)P
δ3

≤ −
(

1
21c
− 2c′(2δ3 + δ4)

)
P δ3

≤ −1
2
c′(1− 2δ3 − δ4)P

δ3

by the upper bound in (3.13). We get the required result by these two

estimates with (3.16). This completes the proof. �

Now we finish the proof of Theorem 1.1.

Let η ∈ (0, 1
100

] and δ0 ∈ (0, 1] be fixed and m ∈ {1, 2, 3, 4}. Take δi

(1 ≤ i ≤ 4) such that

1/θ1 > δ1 > 2/(1− θ2), δ2 = 2δ0 = 2θ3, δ3 = θ1, δ4 = θ2.

It is easy to verify that δ1 and δ3 fulfill the conditions in Lemmas 2.4 and

2.5 respectively, and 1/δ3 > δ1. Define

x = exp
{
[(log k)/7(m + 4)]δ0

}
, y1 := (log k)δ1 , y2 := (log2 k)1/δ3 .

Then we consider the following three cases according to the size of z.

1◦ The case z ≥ x

The required formula follows immediately from Lemma 3.1 with a better

upper bound O(k31η) for the exceptional set in view of (3.5).

2◦ The case y1 ≤ z < x

Using Lemma 3.1 with x = exp{[(log k)/7(m + 4)]δ0}, we can write

log L(1, symmf) =
∑
p≤z

∑
0≤j≤m

log

(
1− αf (p)m−2j

p

)−1

+ O

(
1

(log k)δ0

)
+ R1(symmf)(3.17)

for any f ∈ H+
k,symm(1; η), where

R1(symmf) := −
∑

z<p≤x

∑
0≤j≤m

log

(
1− αf (p)m−2j

p

)
.

This case will be done if we show that R1(symmf) is negligible apart from

a small exceptional set of f . Clearly,

R1(symmf) =
∑

z<p≤x

{
λsymmf (p)

p
+ Om

(
1

p2

)}
=

∑
z<p≤x

λsymmf (p)

p
+ O

(
1

z

)
.
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Define

Pi := 2i−1z, Qi := min{2iz, x}, E1
m := H−

k,symm(1; η) ∪ ∪
i�log x

E1
m(Pi, Qi),

where E1
m(Pi, Qi) is defined as in (3.11). According to Lemma 3.2, we have

|E1
m| � k31η +

∑
i�log x

|E1
m(Pi, Qi)| � (log k)δ0k1−θ0

and for f /∈ E1
m,

R1(symmf) �
∑

i�log x

∣∣Tsymmf (Pi, Qi)
∣∣ +

1

z

� 1

(log k)δ2−δ0
+

1

z
.

Inserting it into (3.17), we find that for f /∈ E1
m,

log L(1, symmf) =
∑
p≤z

∑
0≤j≤m

log

(
1− αf (p)m−2j

p

)−1

+ O

(
1

(log k)min{δ0, δ2−δ0}
+

1

z

)
,(3.18)

which will give the required result.

3◦ The case y2 ≤ z < y1

We truncate the tail as in (3.17), and use the estimate in the second case.

Thus it remains to evaluate

R2(symmf) := −
∑

z<p≤y1

∑
0≤j≤m

log

(
1− αf (p)m−2j

p

)
.

Let us take

Pi := 2i−1z, Qi := min{2iz, y1}, E2
m := H−

k,symm(1; η)∪ ∪
i�log2 k

E2
m(Pi, Qi).

By Lemma 3.3, we have

|E2
m| � k31η + ke−(θ(m)+2)zδ3 log2 k

� ke−θ(m)zδ3

and

R2(symmf) �
∑

i�log2 k

∣∣Tsymmf (Pi, Qi)
∣∣ +

1

z
(3.19)

�
∑

i�log2 k

1

(2i−1z)δ4
+

1

z

� 1

zδ4

for all f /∈ E2
m.

Finally define E∗
k := E1

m ∪ E2
m, then we have

|E∗
k| � ke−θ(m)zδ3 .
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In view of (3.19) and (3.18), we derive that

log L(1, symmf) =
∑
p≤z

∑
0≤j≤m

log

(
1− αf (p)m−2j

p

)−1

(3.20)

+ O

(
1

(log k)δ5
+

1

zδ4

)
for f ∈ H∗

k(1)rE∗
k, where δ5 := min{δ0, δ1, δ2 − δ0}. Obviously this is

equivalent to our required result. The proof of Theorem 1.1 is thus complete.

�

§ 4. Proof of Corollary 1.2

By Theorem 1.1 with the choice of

z = log k, θ1 = 1
2
− ε, θ2 = θ3 = ε,

there is a subset E∗
k of H∗

k(1) such that |E∗
k| � ke−(log k)1/2−ε

and

L(1, symmf) =

{
1 + O

(
1

(log k)ε

)} ∏
p≤z

∏
0≤j≤m

(
1− αf (p)m−2j

p

)−1

for each f ∈ H∗
k(1)rE∗

k. In view of (1.4) and the prime number theorem, it

follows that

L(1, symmf) ≤
{

1 + O

(
1

(log k)ε

)} ∏
p≤z

(
1− 1

p

)−(m+1)

=

{
1 + O

(
1

(log k)ε

)}
(eγ log2 k)m+1

for all f ∈ H∗
k(1)rE∗

k. This proves the upper bound result in Corollary 1.2

and one can treat the lower bound in the same way. �
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(2001), 667–687.

[19] E. Royer, Interprétation combinatoire des moments négatifs des valeurs de fonc-
tions L au bord de la bande critique, Ann. Sci. École Norm. Sup. (4) 36 (2003),
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