The Mathematical Garden

 | Welcome  | Games  | Mathematical methods  | About us |
Mathematical methods
HMMs
Mathematical Induction
Pigeonhole principle
Random Walk
Solving Linear Systems
LU Factorization
Iterative Method
Convergence Analysis
References

Iterative Method

If we are to solve
Ax = é
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
 1

2
 1

3
0
 1

3
1
 1

3
0
 1

3
 1

2
ù
ú
ú
ú
ú
ú
ú
ú
ú
ú
û
é
ê
ê
ê
ë
x1
x2
x3
ù
ú
ú
ú
û
= é
ê
ê
ê
ë
5
10
5
ù
ú
ú
ú
û
=b.
There are at least three different ways of splitting matrix A. They result in three types of iterative methods.


A
=
é
ê
ê
ê
ë
1
0
0
0
1
0
0
0
1
ù
ú
ú
ú
û
+ é
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
 -1

2
 1

3
0
 1

3
0
 1

3
0
 1

3
 -1

2
ù
ú
ú
ú
ú
ú
ú
ú
ú
ú
û
    case 1
=
é
ê
ê
ê
ê
ê
ê
ê
ë
 1

2
0
0
0
1
0
0
0
 1

2
ù
ú
ú
ú
ú
ú
ú
ú
û
+ é
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
0
 1

3
0
 1

3
0
 1

3
0
 1

3
0
ù
ú
ú
ú
ú
ú
ú
ú
ú
ú
û
    case 2
=
é
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
 1

2
0
0
 1

3
1
0
0
 1

3
 1

2
ù
ú
ú
ú
ú
ú
ú
ú
ú
ú
û
+ é
ê
ê
ê
ê
ê
ê
ê
ë
0
 1

3
0
0
0
 1

3
0
0
0
ù
ú
ú
ú
ú
ú
ú
ú
û
    case3
=
S + (A-S)
Now
Ax=(S + (A-S)) x = b
and therefore
S x + (A-S) x = b.
Hence we may write
x = S-1 b -S-1 (A - S) x
where we assume that S-1 exists.

Given an initial guess x(0) of the solution of Ax=b, one may consider the following iterative scheme:
x(k+1) = S-1 b - S-1 (A-S) x(k)
Clearly if x(k) ® x as k ® ¥ then we have x = A-1 b.

Theorem 2: If there exists a matrix ||.||M such that ||S-1 (A-S)||M < 1 then the iterative scheme converges to the solution of Ax=b. The proof can be found in the 1st item in the reference section.

Remark: A matrix norm ||.||M is similar to a vector norm. For any two square matrices A and B of the same size, we have (i) ||A||M=0 if and only if A=0, (ii) ||cA||M = |c|||A||M and (iii) ||A+B||M £ ||A||M + ||B||M.


Examples

Let A be the matrix and b be the right hand side vector and we use x(0)=[0, 0, 0]t as the initial guess.

Case 1: When S=I, this is called the Richardson Method.


x(k+1)
=
b- (A-I) x(k)
=
é
ê
ê
ê
ë
5
10
5
ù
ú
ú
ú
û
- é
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
-  1

2
 1

3
0
 1

3
0
 1

3
0
 1

3
-  1

2
ù
ú
ú
ú
ú
ú
ú
ú
ú
ú
û
x(k)

x(1)
=
[ 5, 10, 5]t
x(2)
=
[4.1667, 6.6667, 4.1667]t
x(3)
=
[4.8611, 7.2222, 4.8611]t
x(4)
=
[5.0231, 6.7593, 5.0231]t
:
x(30)
=
[5.9983, 6.0014, 5.9983]t.

Case 2: When S = Diag [a11,¼, ann] then this is called the Jacobi method.

Therefore
x(k+1)
=
S-1 b- S-1 (A-S) x(k)
=
é
ê
ê
ê
ë
10
10
10
ù
ú
ú
ú
û
- é
ê
ê
ê
ê
ê
ê
ê
ë
 1

2
1
 1

2
ù
ú
ú
ú
ú
ú
ú
ú
û
-1






 
é
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
0
 1

3
0
 1

3
0
 1

3
0
 1

3
0
ù
ú
ú
ú
ú
ú
ú
ú
ú
ú
û
x(k)
=
[10 10 10]t - é
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
0
 2

3
0
 1

3
0
 1

3
0
 2

3
0
ù
ú
ú
ú
ú
ú
ú
ú
ú
ú
û
x(k)

x(1)
=
[ 10, 10, 10]t
x(2)
=
[3.3333, 3.3333, 3.3333]t
x(3)
=
[7.7778, 7.7778, 7.7778]t
:
x(30)
=
[6.0000, 6.0000, 6.0000]t.

Case 3: When S = Lower triangular part of the matrix A. This method is called the Gauss-Seidel Method.


x(k+1)
=
S-1 b- S-1 (A-S) x(k)
=
é
ê
ê
ê
ê
ê
ê
ê
ë
10
 20

3
 50

9
ù
ú
ú
ú
ú
ú
ú
ú
û
- é
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
 1

2
0
0
 1

3
1
0
0
 1

3
 1

2
ù
ú
ú
ú
ú
ú
ú
ú
ú
ú
û
-1








 
é
ê
ê
ê
ê
ê
ê
ê
ë
0
 1

3
0
0
0
 1

3
0
0
0
ù
ú
ú
ú
ú
ú
ú
ú
û
x(k)

x(1)
=
[ 10,  20

3
,  50

9
]t
x(2)
=
[5.5556, 6.2963, 5.8025]t
x(3)
=
[5.8025, 6.1317, 5.9122]t
x(4)
=
[5.9122, 6.0585, 5.9610]t
:
x(14)
=
[6.0000, 6.0000, 6.0000]t.

Theorem 3: If A is diagonally dominant, then both the Jacobi method and Gauss-Seidel method converge to the solution of Ax=b. The proof can be found in the book listed in the reference section.

Department of Mathematics, HKU, 2010