The Mathematical Garden

 | Welcome  | Games  | Mathematical methods  | About us |
Mathematical methods
HMMs
Mathematical Induction
Pigeonhole principle
Random Walk
Solving Linear Systems
LU Factorization
Iterative Method
Convergence Analysis
References

Convergence Analysis

Given a square matrix G, we observe that
(In - G)( k
å
i=0 
Gi) = (In-G) (In +G +G2 + ¼+ Gk) = In - Gk+1.
Thus if

lim
k ® ¥ 
Gk = 0
then

lim
k ® ¥ 
k
å
i=0 
Gi = (In -G)-1.

Recall our iterative scheme
x(k+1) = S-1 b - S-1 (A-S) x(k).
Let
G=S-1(S-A)     and     r=S-1b
then we have
x(k+1) = Gk+1x(0) + ( k
å
i=0 
Gi)r.
Hence if

lim
k® ¥ 
Gk+1=0
then

lim
k ® ¥ 
xk+1 = (In-G)-1r = A-1b.

Theorem 4: If

lim
k ® ¥ 
(In- S-1A))k = 0
then the iterative scheme
x(k+1) = S-1b - S-1 (A-S) x(k)
converges to the solution of Ax=b independent of x(0).


Special Case Analysis

In the following, we give a convergence proof for the Jacobi method for solving the tridiagonal linear system. We need the following interesting result.

Theorem 5: The eigenvalues of the matrix
H = é
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
a
b
0
c
a
b
···
···
···
c
a
b
0
c
a
ù
ú
ú
ú
ú
ú
ú
ú
ú
ú
û
is given by
l = a +
Ö
 

bc
 
cos(  jp

n+1
)     for    j=1,2,¼,n.
The proof is as follows.

Let l be an eigenvalue and v=(v1,v2,¼,vn) be its eigenvector. Then from Hv=lv we have n equations as follows:
(a-l)v1 + b v2
=
0
cv1 + (a-l)v2 + bv3
=
0
:
:
:
cvn-1 + (a-l)vn
=
0.
This can be summarized as a difference equation:
cvj-1 + (a-l)vj +bvj+1 = 0     for    j=1,2,¼,n
with v0=vn+1=0.

By using standard solution for a second order linear difference equation, the solution is given by
vj = am1j + bm2j
where mi are the distinct roots of the quadratic equation
c+ (a-l)m + bm2 = 0.
We have
0 = a+ b    and     0=am1n+1 + bm2n+1.
Hence we have
(  m1

m2
)n+1 = 1 = ei2jp     and     m1m2=  c

b
.
Therefore we can solve
m1=   æ
Ö

 c

b
 
e[(ijp)/(n+1)]     and    m2=   æ
Ö

 c

b
 
e[(-ijp)/(n+1)].
Since
m1 + m2 =  l-a

b
we get
l = a +
Ö
 

bc
 
( e[(ijp)/(n+1)] +e[(-ijp)/(n+1)]) = a + 2
Ö
 

bc
 
cos(  jp

n+1
).
Hence the result.

For the Jacobi method, we have
G = é
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
0
1/2
0
1/2
0
1/2
···
···
···
1/2
0
1/2
0
1/2
0
ù
ú
ú
ú
ú
ú
ú
ú
ú
ú
û
.
From Theorem 5 the eigenvalues of G are given by
lj = cos(  jp

n+1
)=1 -2sin2(  jp

2(n+1)
),     j=1,2,¼,n.
We note that |lj| < 1, so all the eigenvalues of limk ® ¥ Gk are zero. Since Gk are all symmetric, we have

lim
k ® ¥ 
Gk = 0.
Hence the Jacobi matrix is convergent for solving the tridiagonal linear system.

Department of Mathematics, HKU, 2010