Members
- Prof. Y.K. Lau
Analytic number theory, automorphic forms, L-functions
- Dr. C.Y. Hui
Algebraic number theory, arithmetic geometry and algebra
- Dr. B. Kane
Number theory, combinatorics
- Dr. X. Zhang
Analytic Number Theory, Homogeneous Dynamical Systems, Linear Algebraic Groups
- Dr. D. Park, Postdoctoral Fellow
The arithmetic theory of quadratic forms and lattices
Conferences and Workshops
Selected Publications
- Lau Y.-K. and Wang Y., Absolute values of L-functions for GL(n,R) at the point 1, Adv. Math., 335 (2018), p.759-808
- Zhang D., Lau Y.-K., Wang Y., Remark on the paper "On products of Fourier coefficients of cusp forms", Archiv der Mathematik, 108 (2017), p.263-269
- Lau Y.-K., Liu J., Wu J., Local Behavior of Arithmetical Functions with Applications to Automorphic L-Functions, International Mathematics Research Notices, 2017 (2017), p.4815-4839
- Lau Y.-K., Royer E., Wu J., Sign of Fourier coefficients of modular forms of half-integral weight, Mathematika, 62 (2016), p.866-883
- C.-Y. Hui, M. Larsen, Maximality of Galois actions for abelian and hyperkahler varieties, Duke Math. J., 169 (2020), p.1163-1207
- A. Cadoret, C.-Y. Hui, A. Tamagawa, Geometric monodromy - semisimplicity and maximality, Annals of Math., 186 (2017), p.205-236
- C.-Y. Hui, l-independence for compatible systems of (mod l) representations, Compos. Math., 151 (2015), p.1215-1241
- King Cheong Fung and Ben Kane, On sign changes of cusp forms and the halting of an algorithm to construct a supersingular elliptic curve with a given endomorphism ring, Mathematics of Computation, 87 (2018), p.501-514
- Kathrin Bringmann, Ben Kane, Steffen Loebrich, Ken Ono and Larry Rolen, On Divisors of Modular Forms, Advances in Mathematics, 329 (2018), p.541-554
- Kathrin Bringmann, Ben Kane, Daniel Parry, and Robert Rhoades, On the Andrews-Zagier asymptotics for partitions without sequences, Advances in Mathematics, 309 (2017), p.436-451
- Kathrin Bringmann and Ben Kane, A problem of Petersson about weight 0 meromorphic modular forms, Research in the Mathematical Sciences, 3 (2016), p.1-31
- X. Zhang, On Representation of Integers from Thin Subgroups of SL(2, ℤ) with Parabolics, International Mathematics Research Notices, September (2020), p.5611-5629